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Editor’s Note

Welcome to the The Gonzaga Journal of Mathematical Sciences. This Journal was
created to provide a medium through which Gonzaga undergraduates can

showcase their research experiences with others within the Gonzaga community.
All submissions are reviewed by at least two students and the managing editor.
The criteria for publication are:

• submissions must contain a significant mathematical component;

• student authors must engage in a novel exploration (see below);

• submissions must conform to general standards for academic writing.

This issue features contributions from students enrolled in Nonlinear Ordinary
Differential Equations, Math 452, during the Fall 2017 semester. The course provides
an introduction to elementary techniques used in the analysis of nonlinear systems
including: the geometry of phase space, linear stability analysis, bifurcation
theory, energy and pseudo-energy methods such as Lyapunov functions, the
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Poicaré-Bendixson theorem, Liénard systems, chaos theory, the structure of strange
attractors, and more.

Students were asked to select a published peer-reviewed journal article on
any topic of interest as long as the article focused on the analysis of a system of
nonlinear ordinary differential equations. Students were tasked with reproducing
as much of the article’s results as possible. At a minimum, student were to
describe in detail the model and its parameters, write the model in dimensionless
form, find all fixed points and perform a linear analysis of those points. Students
were then asked to solve the system numerically and interpreted their results with
the aid of software packages such as pplane, Mathematica, or Python.

To add a novel element to their analysis, students were asked to pose and
explore one or more, “What If?” type questions. The activity requires students to
draw upon their personal creativity and problem solving skills. It also provides
students with an avenue through which they may experience a sense of discovery
as they proceed with their analysis. This novel component is included in a “Fur-
ther Analysis” section of their articles.

Biological systems provide a rich source of nonlinear phenomena. In this area
Lydia Pane examines a highly nonlinear continuous time model for viral dynamics
and its application to oncology. Taha Hakkani explores circadian rhythms via
coupled oscillators and compares theoretical predictions to pooled data of test
subjects in a sleep pattern experiment, and Elijah Michaelson examines a model
for a genetic toggle switch to gain insight into the implementation details of
cell-fate decision processes.

Two articles in this issue relate to economic theory. Bailey Englin examines the
use of the forced van der Pol oscillator to model nonlinear aspects of the business
cycle. Joseph Kincanon and Matthew Krick collaborate to examine the dynamics
of a two-dimensional map proposed by economist Tõnu Puu as a discrete time
model for duopoly pricing.

In the physical sciences, Eli Dawson studies the chaotic behavior of the double
pendulum. In addition to investigating mathematical aspects of the model, Mr.
Dawson constructed a physical model of the double pendulum, which was then
used to test theoretical predictions with numeric simulations and observation.

Richard Cangelosi

December 15, 2017
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The Chaotic Behavior of the
Double Pendulum

Eli Dawson

Gonzaga University
Department of Mechanical Engineering

edawson@zagmail.gonzaga.edu

Abstract

In this study we will derive and explore the equations of motion for a double
pendulum. We begin with a derivation based upon an energy analysis of the
Lagrangian for the system and then compare this with equations obtained
by a free-body analysis. For certain values of the parameters, the double
pendulum exhibits chaotic motion. A simulation is given showing the effect
of initial conditions on a system when in its chaotic regime. As part of this
study we will examine a physical model of the double pendulum to compare
theoretical results with physical data.

1. Introduction

The double pendulum is a classic and demonstrable application of nonlinear
dynamics and the idea of chaos. In what appears to be simple harmonic swings
for trajectories with a small initial angular displacement, a sudden and seemingly
unexplainable change in its motion is observed for trajectories with a larger initial
angular displacement. The double pendulum is an excellent place to begin an
exploration into nonlinear dynamics.

The pendulum can be modeled in a number of ways, some being whether or
not the two pendulums are compound or simple, and how many planes they are
allowed to move in. The most classic set-up takes the pendulums as compound
and restricted to two-planes, and therefore is considered a two-degrees of freedom
system. The governing equations of motion for this typical setup results in two
second-order, coupled, ordinary differential equations.

Significant work has been done on the double pendulum (and the triple and
the quadruple!), with the term first used by Hugh Blackburn [3] in the 1890’s. He
created what is now known as the Blackburn Pendulum, or a Harmonograph.
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Since then, what we know today as the double pendulum has been analyzed
in many different ways, most vigorously for its easy relation to demonstrating
chaos in simple systems. A study by [1], develops the equations of motions for
the pendulum using Lagrangians, and then takes a look at its various energy
surfaces. Other modes of characterizing double pendulum chaos has been done
using Lyapunov Exponents [2] and Poincaré Plots [7].

2. Mathematical Models

The mathematical model for the double pendulum consists of two second-order,
coupled, ordinary differential equations. There are plenty of ways to obtain the
equations of motion for the double pendulum, with the most common being
the Langrangian approach. Additionally, using a free-body and force-summing
analysis of the system is an option too, and we will see a comparison of the two
techniques here. The variables that the system relies on are its angular position,
velocity, and acceleration, while the model also contains five parameters. Point
masses and rigid/massless connection assumptions are made. A schematic of the
system and the model’s variables and parameters are given below.

Figure 1: A planar lumped-mass ideal double-pendulum.

2
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θ1 = The angular position of the top pendulum (radians)
θ2 = The angular position of the bottom pendulum

with respect to the top pendulum
.
θ1 = The angular velocity of the top pendulum
.
θ2 = The angular velocity of the bottom pendulum
..
θ1 = The angular acceleration of the top pendulum
..
θ2 = The angular acceleration of the bottom pendulum
`1 = The length of the top pendulum
`2 = The length of the bottom pendulum

m1 = The mass of the bottom pendulum
m2 = The mass of the bottom pendulum

g = The acceleration of gravity

2.1. Lagrangian Model

The most common approach in solving the equations of motion is through La-
grangians. They are formed by doing a kinetic and potential energy analysis
of the system in order to obtain L = T − V, where T = kinetic energy and
P = potential energy. We start by solving for x and y, which represent the two
degrees of freedom, θ1 and θ2.

x1 =`1 sin θ1 (1)
y1 =− `1 cos θ1 (2)
x2 =`1 sin θ1 + `2 sin θ2 (3)
y2 =`1 cos θ1 + `2 cos θ2 (4)

We now solve for the Lagrangian L = T −V

V =m1gy1 + m2gy2

T =
1
2

m1v2
1 +

1
2

m2v2
2

Substituting in equations (1),(2),(3), and (4) and solving for .x1 and .y1 to use as v1
and v2 we obtain

3



Fall 2017 • Gonzaga Journal of Mathematical Sciences • Vol. III, No. 1

V =− (m1 + m2)g`1 cos θ1 −m2g`2 cos θ2 (5)

T =
1
2

m1`
2
1

.
θ1

2 +
1
2

m2(`
2
1

.
θ1

2 + `2
2

.
θ2

2 + 2`1`2
.

θ1
.

θ2 cos (θ1 − θ2)) (6)

To simplify Equations (5) and (6) we introduce

µ =
m2

m1
` =

`2

`1

Substituting the non-dimensionalized parameters we arrive at the traditional
kinetic and potential Lagrangian Equations for the Double Pendulum.

T/M1`
2
1 =

1
2
(1 + µ)

.
θ2

1 + µ` cos (θ2)
.

θ1(
.

θ1 +
.

θ2) +
1
2

µ`2(
.

θ1 +
.

θ2)
2 (7)

V/M1g`1 = (1 + µ)(1− cos θ1 + µ`(1− cos (θ1 + θ2)). (8)

We now combine (5) and (6) together with L = T −V to obtain

L =
1
2

m1`
2
1

.
θ1

2 +
1
2

m2(`
2
1

.
θ1

2 + `2
2

.
θ2

2 + 2`1`2
.

θ1
.

θ2 cos (θ1 − θ2))

+ (m1 + m2)g`1 cos θ1 + m2g`2 cos θ2

(9)

This is the traditional format of the Lagrangian, and it can now be used to obtain
the same equations of motion provided in section 2.2.

2.2. The Free-Body Model

A more tedious way of obtaining the equations of motion is by creating a free-
body-diagram of the double pendulum system, and summing forces. We omit
the details and give the equations of motion, which are given based on the same
parameters and variables discussed in 2.1.

(m1 + m2)`
2
1

..
θ1 + m2`1`2 cos(θ1 − θ2)

..
θ2 + m2`1`2 sin(θ1 − θ2)

.
θ2

2

+ (m1 + m2)g`1 sin θ1 = 0
(10)

and

m2`1`2 cos (θ1 − θ2)
..
θ1 + m2l2

2
..
θ2 −m2`1`2 cos (θ1 − θ2)

.
θ1

2

+ m2g`2θ2 = 0
(11)

These are the two second-order, coupled, ordinary differential equations men-
tioned previously, which could also be obtained from the Lagragian Equations in
2.1.
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2.3. State-Space Model

A useful way of looking at these equations is in state-space. If one were to
graph the equations of motion in a program such as MATLAB or Mathematica,
it is easiest done with functions that take state-space inputs. To get to the very
generalized state-space matrix, first a little non-dimensionalizing will help.

We introduce the dimensionless quantities

µ =
m2

m1
, ` =

`2

`1
, and τ =

√
g/`1t. (12)

We substitute these in Equations (10) and (11) and along with some rearrangement
we obtain

(1 + µ)
d2θ1

dτ2 + µ`

(
d2θ2

dτ2 cos(θ2 − θ1)−
(

dθ2

dτ

)2

sin(θ2 − θ1)

)
+ (1 + µ) sin θ1 = 0

(13)

and

µ`

(
d2θ2

dτ2 +
d2θ1

dτ2 cos(θ2 − θ1) +

(
dθ1

dτ

)2

sin(θ2 − θ1) + sin θ2

)
= 0 (14)

These equations can be decoupled to obtain one equation containing d2θ1
dτ2 and

another with d2θ2
dτ2 , which can then be entered into the matrix form[

(1 + µ) µλ cos(θ1 − θ2)
µλ cos(θ1 − θ2) µλ2

] [ d2θ1
dτ2

d2θ2
dτ2

]
=

[
g1
g2

]
(15)

where

g1 = −(1 + µ) sin θ1 − µλ

(
dθ2

dτ

)2

sin(θ1 − θ2),

g2 = −µλ

(
sin θ2 +

(
dθ1

dτ

)2

sin(θ1 − θ2)

)
.

The first matrix (M1) in (15) is invertible and symmetric, so we can solve for
the second derivatives to get[

d2θ1
dτ2

d2θ2
dτ2

]
=

1
det(M1)

[
µλ2 −µλ cos(θ1 − θ2)

−µλ cos(θ1 − θ2) (1 + µ)

] [
g1
g2

]
. (16)
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Equation (16) can then be decoupled into four linearly-independent first-order
differentials by introducing the state variables

y1 = θ1, y2 =
dθ1

dτ
, y3 = θ2, and y4 =

dθ2

dτ
.

A state-space matrix can then be formed with the first-order equations, and that
is what is used as input in programs such as MATLAB.

3. Results

By forming the Lagrangian to solve the equations of motion (7) and (8), we have
opened up the possibility to take a look at various energy related facets of the
equations. One of the things that we will take a look at is the Hamiltonian that
can be formed from the Lagrangian, and how this Hamiltonian can be used
to graph equipotentials for various setups. Additionally, we will take a look
at a proposed numeric scenario that depicts the chaotic nature of the double
pendulums equations of motion.

3.1. The Hamiltonian

For a closed system, a Hamiltonian is the sum of the kinetic and potential energy
in a system. It is indexed to the frame of reference for the system by a set of
canonical coordinates r = (q, p), which represent the Cartesian and Momenta
coordinates. The time evolution of the system is described as follows.

dp
dt

= −∂H
∂q

and
dq
dt

= +
∂H
∂p

. (17)

To arrive at the Hamiltonian for the double pendulum, we start at equations (7)
and (8) and introduce new dimensionless variables that include the total angular
momentum [L], energy [E], and the strength of gravity relative to the total energy
[γ] of the system.

We introduce the dimensionless variables

t→ t
√

E/m1`
2
1, λi = Li/

√
Em1`

2
1, and γ = m1g`1/E. (18)

From (9) we can then obtain the angular momenta Li =
∂T
∂θi

L1/m1`
2
1 = (1 + µ + 2µ` cos θ2 + µ`2)

.
θ1 + µ`(`+ cos θ2)

.
θ2 (19)

L2/m1`
2
1 = µ`(`+ cos θ2)

.
θ1 + µ`2 .

θ2 (20)
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Which allows us to solve for the Hamiltonian h = T+V
E

h =
1

1 + µ sin2 θ2

(
1
2

λ2
1 −

`+ cos θ2

`
λ1λ2 +

1 + µ + 2µ` cos θ2 + µ`2

2µ`2 λ2
2

)
+ γ {(1 + µ)(1− cos θ1) + µ`[1− cos(θ1 + θ2)]}

(21)

The Hamiltonian shows that the physics of the double pendulum depends on the
parameters µ, `, and γ. From the energy conservation depicted in this ideal system,
both the Hamiltonian and the equations of motion describe a motion on the three-
dimensional energy surface h = 1 in four-dimensional space. (θ1, λ1, θ2, λ2)

3.2. Equipotentials

An equipotential is a helpful tool for looking at energy affiliations within the
model. For the scenario presented in Figure 2, the angle θ1 is the displacement of
the mass m1 measured counterclockwise from the negative y-axis, while θ2 is the
displacement of m2 measured counterclockwise counterclockwise relative to the
axis described by θ1. From the three cases presented below, a few observations
are made. The potential will assume its minimum value of zero when θ1 = θ2 = 0.
Saddle points of the potential will occur when θ2 = π if θ1 = 0 or θ1 = π. The
greatest potential will occur at θ1 = π while θ2 = 0. From the second figure,
the saddles will then become degenerate when the center of gravity for θ2 = π

coincides with the suspension point, ` = (1 + µ)/µ. As the length ratios are
increased past `2, the nodes are no longer degenerate, however they begin to shift
counter-clockwise and depict angle restrictions θ1,2 < π when the potential energy
exceeds the total energy (E) at the lower saddle point.

Figure 2: Equipotential lines V/(γE)=1,2,3... (as indicated by color) for equal masses µ=1 and
length ratios `=1 (left), `=2 (center), and `=3 (right)
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3.3. Sensitivity to Initial Conditions

In relation to chaos, the dependence on initial conditions can be easily seen in a
double pendulum simulation. By creating a MATLAB script using the ODE45
function that takes a decoupled state-space matrix input described in Section 2.3, a
numerical simulation is presented in Figure 3 (thanks to Dr. Timothy Fitzgerald).

The following parameters of the system are used:

Quantity Value
m1g 1.0 lb
m2g 2.0 lb
`1 18.0 in
`2 9.0 in

Two initial conditions are explored for these parameters:

(a) θ1(0) = 90◦, θ2(0) = 90.0◦,
.

θ1(0) = 0,
.

θ2(0) = 0 (22)

(b) θ1(0) = 90◦, θ2(0) = 90.1◦,
.

θ1(0) = 0,
.

θ2(0) = 0 (23)

Figure 3: Double Pendulum Motion for case (a)-blue and (b)-orange for 0 to 6 s.
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Figure 4: Double Pendulum Variation for case (a) and (b) for 0 to 6 s.

From the graphed simulations, it becomes apparent how serious the initial
conditions will dictate the motion of the pendulum. After 3 seconds, the two
scenarios begin to show a variation in their angles, despite just a 0.1◦ difference in
starting position. As time goes on, these angles begin to deviate even more. As is
true with chaos, the long term motion of the system seems to fluctuate greatly. No
intuitive relationship can be discerned by just looking at the graphs. This is the
beauty of chaos, and how sensitivity to initial conditions make motions become
more and more unpredictable as time goes on.

4. Further Analysis

As is true with all principles of mathematics, we can find real world examples
that directly use these models to predict and control scenarios. An application of
the double pendulum is frequently found in control systems, the most popular of
which is called the “inverted double pendulum on a cart”. The scenario involves a
double pendulum being placed on a slider that can move back and forth on a fixed
axis. The idea of this system is that the slider will accelerate very quickly with
the pendulums both hanging down at 0◦, and then abruptly change its direction
of motion several times in a brief instance. By doing this, the system is able to
change its angular velocities the requisite amount for the pendulum to reach a
stable point directly on top of each other, 180◦ from where they began.

9
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Figure 5: Inverted Double Pendulum on a Cart

The ideal equations of motion for this scenario can be found from [6]. However,
in reality when these simulations occur, the friction in the pendulum bearings
must be accounted for. The reason for this is that the friction allows for what
the traditional model predicts as an unstable node to become more stable than
predicted, which is why these straight up positions (depicted in Figure 5) are
achievable. Similar steps may be taken to arrive at the equations presented in
[6] as done in this article, especially forming the Hamiltonian and graphing
equipotentials for various parameters. A video of this control problem in action
can be found at https://www.youtube.com/watch?v=B6vr1x6KDaY.

Further analysis definitely worth looking into for the double pendulum include
Poincaré Plots, finding Lyapunov Exponents, or finding the energy excitation levels
needed to cause a “flip” of the pendulums. Something else to consider would be
to try and replicate the frictional forces present in the model, and see whether
the extra parameters introduced will give a smaller range for what would be
considered the chaotic regime.

5. Discussion

The whole idea of this article has been to introduce a system that seems so simple,
yet displays a plethora of different behaviors which yields endless options of
exploration. With a physical model it becomes a fun exercise to see what kind
of conditions we can try to mimic from the ideal model, or how difficult it is to
match the predictions for the long-term. With a very basic introduction to the
double pendulum, it is the hope of this article to spur some more creative insight

10
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to be developed for this system, or bridge the gap to a more involved scenario
such as the inverted double pendulum on a cart as discussed before.

It is an accepted fact that we will never be able to model anything perfectly;
however, we still are capable of creating models that would seem flawless to the
untrained eye. With a shift into a chaotic regime predictability becomes impossible.
Even the untrained eye can tell when something is amiss. Understanding these
systems has serious implications in the real world (for example, predicting the
weather) and being able to gain an understanding of a very simple model will
allow one to understand why real world models are so volatile.

Editor’s note. A fine physical model of the double pendulum was built by the
author and generously donated by the author to this very appreciative editor.
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The Forced van der Pol Oscillator
as an Economic Model for the

Nonlinear Accelerator Principle

Bailey Englin

Gonzaga University
Department of Mathematics

benglin@zagmail.gonzaga.edu

Abstract

In this report we examine a nonlinear model for the business cycle. Following
the work of Goodwin (1951), we begin with a standard linear model and
then incorporate additional aspects of the business cycle to increase the
model’s realism. In doing so, we arrive at Goodwin’s nonlinear accelerator
model, which is readily seen as the unforced van der Pol oscillator. We use
standard techniques from dynamical systems theory to analyze the van der
Pol oscillator and then extend the model to include constant and periodic
forcing. We conclude with an interpretation placing results obtained in a
economic context.

1. Introduction

The complex dynamics of economic systems can be studied using mathematical
techniques employed in the analysis of nonlinear model. With that in mind, we
note that certain models of the business cycle can be reduced to the forced van
der Pol oscillator [4, 6, 8, 11]

..u + γ(u2 − 1) .u + u = G(t). (1)

When the parameter γ >> 1, Equation (1) is considered part of a broad class of
oscillators known as relaxation oscillators.

In 1951, R.M. Goodwin [4] looked at the accelerator and economic cycle theory
in a nonlinear way, which previously was analyzed via linear models. The
drawback of a linear model is that they do not take into account lags or basic
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elements of oscillations. Also, when analyzing them linearly, one will reach the
conclusion that the model will either explode or die away, meaning the society
essentially disappears, which is clearly not logical. Linear theory also requires that
an economic downswing to be the same as the upswing as opposed to nonlinear
theory where the depression can be different in form and duration from the boom
cycle, which more accurately describes an economy’s business cycle.

The accelerator principle [1] is an economic concept that draws a connection
between output and capital investment. According to the acceleration principle, if
demand for consumer goods increases, then the percentage change in the demand
for machines and other investment necessary to make these goods will increase
even more (and vice versa). In other words, if income increases, there will be a
corresponding but magnified change in investment. The acceleration principle
has the effect of exaggerating booms and recessions in the economy. This makes
sense, as companies want to optimize their profits when they have a successful
product, they begin investing in more factories and capital investments to produce
more. If a recession hits, they will reduce investment. This investment reduction
can increase the length of the recession. This is because less investment means
less jobs created, and so on. The idea of the accelerator principle has been used in
economic theory to link output to capital investment since the 1930’s.

Since Goodwin’s paper was published, other authors have published papers
building on the foundations of the model Goodwin presents. Tobin [10] presents
a simple aggregative model that allows for the possibility of substitutions and
monetary effects. This model has a similar cyclic behavior as Goodwin’s, but
this cycle depends on the inflexibility of prices, monetary wages, or supply of
monetary assets. Chen [3] presents actual empirical and theoretical investigations
of chaos in macroeconomic models. While Goodwin’s paper presents a theoretical
model of the nonlinear accelerator, this paper provides techniques in testing
economic aggregate movements. Lorenz and Nusse [7] present Goodwin’s model
and use it as an economic example of emergence of complex motion in nonlinear
dynamical systems.

Goodwin’s nonlinear accelerator provided a new foundation for a model
that more accurately represents the business cycle. We will look at his series of
models that take into account different properties of economies. This will lead to
analyzing the final model that he presents that is his nonlinear accelerator. Finally,
we will see how this analysis can provide more insights into how nonlinear theory
can find applications in macroeconomic theory.

14
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2. Mathematical Model

2.1. Linear Model

Goodwin [1] introduces a basic linear model of the business cycle. The linear
consumption function is

ξ = ky (2)
c = αy + β (3)

y = c +
.
k (4)

where ξ is desired capital stock, y is income, c is consumption,
.
k is the rate of

change in capital stock, and k, α, and β are all constants. In order to fix one of
the simplicities of this model, the fact that multiplication takes time, Goodwin
replaces equations (3) and (4) with

y = αy + β +
.
k− ε

.y. (5)

This equation is a multiplier, with a lag introduced by ε
.y. A multiplier is the

factor by which the return deriving from an expense exceeds the expense itself.
Goodwin presents other equations accounting for technological progress and
autonomous and induced investment, but these will not effect his final, expanded
model.

2.2. The Nonlinear Expanded Model

The nonlinear model accounts for the lag between decisions to invest and the
corresponding outlays, or expenses. Outlays tend to lag behind decisions by
approximately one half the length of time required for fabrication [4]. Because of
this, we can say

OI(t + θ) ≈ OD(t) = ϕ[
.y(t)] (6)

where OI is investment outlays, OD is investment decisions, ϕ is induced invest-
ment and θ is one half the construction time of new equipment. With this, we can
rewrite equation (5) as

ε
.y(t + θ) + (1− α)y(t + θ) = OA(t + θ) + ϕ[

.y(t)] (7)

where OA is the sum of the independent expenses β and l, with β being the
historically given upward drift of the consumption function, which expresses
consumer spending, and l being the historically given investment expenses. Taking
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this equation, we can expand the two leading terms in a Taylor series and then
keep only the first two terms in each.

Recall that the Taylor series representation of a function y = y(θ) about a point
t is given by

y(θ) = y(t) + .y(t)(θ − t) +O
(
(θ − t)2

)
. (8)

Employing (8) and retaining only first-order terms we have

y(t + θ) = y(t) + .y(t)(t + θ − t) = y(t) + θ
.y. (9)

Computing the time derivative of (9) and multiplying by ε yields

ε
.y(t + θ) = ε

.y + εθ
..y. (10)

Making use of (9) and (10), we may rewrite (7) as

ε
.y + εθ

..y + (1− α)y + (1− α)θ
.y− ϕ(

.y) = OA(t + θ). (11)

This gives us the new, expanded equation.
Now, by shifting our autonomous injections by θ time units and calling it O∗,

we get

εθ
..y + [ε + (1− α)θ]

.y− ϕ(
.y) + (1− α)y = O∗(t)

For now, we take O∗(t) to be a constant, O∗. We then look at deviations from the
equilibrium income by substituting z = y−O∗/(1− α) which gives us

εθ
..z + [ε + (1− α)θ]

.z− ϕ(
.z) + (1− α)z = 0

This equation can then be reduced to a dimensionless form, which Goodwin does
in his paper so see [4] for more details on this. This equation in dimensionless
form becomes

..x + [X(
.x)/ .x] .x + x = 0

which very closely resembles the well-known van der Pol oscillator [11]. This will
be the equation we will be analyzing.
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3. Model Analysis: van der Pol Oscillator

The van der Pol oscillator (VDP), given by Equation (1), resembles a simple
harmonic oscillator, but with the important difference that it contains a nonlinear
damping term µ(x2 − 1) .x. The system will eventually become a self-sustained
oscillator, where the energy lost over a cycle balances with the energy coming in
[9].

To begin analyzing this relaxation oscillator, Strogatz [3] rewrites the system
using a Liénard transformation. Equation (12) is a generalization of the van der
Pol oscillator and lends itself nicely to a theorem that states that the system has
a unique, stable limit cycle under certain hypotheses that the functions f and
g must satisfy. This equation can also be written as a system of equations that
is helpful for doing a transformation on the van der Pol oscillator to make the
analysis easier. The Liénard’s equation is

..x + f (x) .x + g(x) = 0 (12)

which is equivalent to the system
.x = y (13a)
.y = −g(x)− f (x)y. (13b)

By looking at these equations and the theorem, Strogatz [9] is able to determine
multiple results about the van der Pol oscillator. First, by looking at Liénard’s
Theorem and doing a little bit of analysis, he concludes that the van der Pol
oscillator has a unique, stable limit cycle. This limit cycle can be seen in Figure 1.
Any initial point we pick in the diagram will immediately shoot to the limit cycle
and remain on it. Next, by using the Liénard plane, it makes it much easier to
do a phase plane analysis of the VDP oscillator. In Figure 2, we can see the time
series of x and y with time, with x being the position and y being the velocity. By
doing this transformation, the oscillator becomes the system of equations

.x = µ[y− F(x)] (14a)

.y =
−1
µ

x (14b)

where

F(x) =
1
3

x3 − x (15)

This transformation makes it easier to see the nullclines and trajectories, as seen
in the phase plane in Figure 1.
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Figure 1: Phase plane of the unbiased van der Pol oscillator. The x-nullcline is given by the red
cubic shaped curve and the y-nullcline is the vertical yellow line. The intersection at the origin is
the system’s sole fixed point, which is located at the origin. The stable limit cycle is shown in black.

Figure 2: Time series for the unbiased van der Pol oscillator. Observe in the graph of x(t) the
slow initial decline during approximately the first 5 time units followed by a very rapid decline.
The oscillator then begins to slowing increase until a threshold is reach at which time a very rapid
rise ensues. The rapid increase and decrease correspond to the near horizontal upper and lower
boundaries of the limit cycle given in Figure 1. The periods of slow build-up correspond to the left
and right boundaries of the limit cycle.
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4. Further Analysis

We will now look at a biased van der Pol oscillator, that is, the van der Pol
oscillator subject to a constant external force, and see how the analysis changes.
This new equation is

..x + µ(x2 − 1) .x + x = a (16)

where the constant a is some real parameter and µ > 0 as usual.
We first find and classify the fixed points. In order to do this, we will do what

we did with the unbiased oscillator and write our system in Liénard form. We
will define F(x) so that

..x + µ(x2 − 1) .x =
d

dx
(

.x + µF(x)) (17)

Then, doing the same analysis as in the unbiased case, we find that

.y =
−(x− a)

µ
(18)

So, our system becomes
.x = µ[y− F(x)] (19a)

.y = −x− a
µ

(19b)

From this we can see that our x-nullcline becomes y = F(x) and our y-nullcline
becomes x = a. The intersection of the nullclines gives our only fixed point at
x∗ = (a, F(a)) = (a, a3/3− a). The phase plane can be seen in Figure 3, where
a = 0.5. As we can see, it is the same as the phase plane for the unbiased oscillator.
Now that we have our fixed point, our next step is to determine the stability of

this point by evaluating the Jacobian matrix at this point to get

Je ≡ J|x∗ =
[
−µ(a2 − 1) µ

− 1
µ 0

]
.

We see that the trace of Je is τ = −µ(a2 − 1) and the determinant is ∆ = 1.
From this we see that the characteristic equation is

σ2 + µ(a2 − 1)σ + 1 = 0 (20)

To determine the stability of the fixed point, we use the Routh-Hurwitz criterion.
According to the criterion, if the trace, τ < 0 and the determinant δ > 0, then the
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Figure 3: Phase plane with limit cycle of biased van der Pol oscillator with a = 0.5.

Figure 4: Time series of biased van der Pol oscillator with |a| < 1.
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real part of the eigenvalues are negative. Since our determinant is always 1 and
therefore > 0, we need to examine the µ(a2 − 1). Looking at this, we can see we
will have a bifurcation point at a = 1. So, if

|a| > 1 then µ(a2 − 1) > 0, (21)

and the fixed point is stable, but we have an unstable limit cycle. If

|a| < 1 then µ(a2 − 1) < 0, (22)

and the fixed point is unstable, but we have a stable limit cycle. The limit cycle of
this can be seen in Figure 3, and the time series can be seen in Figure 4. Both of
these pictures will look the same as the unbiased oscillator pictures.

5. Economic Relevance

The nonlinear model that Goodwin [4] presents is for an unprogressive economy,
meaning income and capital always return to their previous lows and highs and
can never improve. Goodwin makes this assumption by setting the oscillator
equal to 0. This can be seen graphically when we look at the limit cycle behaviour.
The cycle moves from its low point to high point, but it can never break out of this
loop. In order to model a more realistic, progressive economy, we need to have the
van der Pol oscillator equal to a forcing function. This will alter the stable limit
cycle and more accurately portray how an economy will not necessarily return to
its previous lows and highs.

6. Future Work

To further extend this project, we could analyze the van der Pol oscillator set equal
to not constant forcing function. One such model is given by

..u + γ(u2 − 1) .u + u = Acos(ωt) (23)

The system of equations is now
.x = µ[y− F(x)], (24a)

.y = − 1
µ
[x− A cos (ωt)] . (24b)

This system no longer autonomous because t now appears explicitly. Because of
this, we would need to add a new dimension to our systems, now giving us a
three dimensional system to be analyzed in the future.
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Editor’s note. The nonautonomous system given by (24) may be written as

.x = µ[y− F(x)], (25a)

.y = − 1
µ
[x− A cos (ωz)] , (25b)

.z = 1, (25c)

where we set z = t. Significant progress has been made by [2, 5] and others in
understanding the dynamics of Equations (25); however, several open questions
remain.
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We analyzed the results found when comparing a nonlinear model involving
coupled circadian oscillators to pooled data of test subjects in “free-run” sleep
patterns. By non-dimensionalizing the model, we were able to determine con-
ditions for which internal and external synchronization would be established.
Based on those conditions, linear stability analysis reveals how sleep and
circadian phases differ during external synchrony. Because of the simplicity
of the model, we were also able to write the phase difference explicitly as
function of time, which was used to test the relationship between circadian
phase and sleep duration. This model reflected the pooled data well except
on one account: timing of sleep onset in relation to circadian phase. We
proposed a modification to the original model to correct for this discrepancy.

1. Introduction

That human internal clocks seem to be in sync with the 24-hr day should not be a
surprise to anyone. It isn’t until we witness those who confine themselves from
both daylight and the 24-hour society do we see the steady sleep-wake cycle come
undone. How light affects the body’s sleep cycles has never been as obvious as it
is in this modern age. Blue light emitted from cell phones and television sets can
have a serious impact on sleep and health [5]. A deeper understanding of how
the body’s endogenous cycles interact with each other can be useful for further
research on health and lifestyle habits.

Data related to human circadian rhythms can be found in [1, 2, 4]. In an
experiment described in [2], Siffre secluded himself in a cave for half a year, with
no access to daylight or society. In his ’free-run’ experiment, he experienced
weeks of normal 24-26 hours sleep-wake cycles interrupted by seemingly random
long stretches of sleep. When Cziesler [1] recreated this effect a few years later
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the same phenomenon emerged in his test subjects. Cziesler also happened to
be monitoring internal body temperatures, hormones, and brain waves. When
sleep-wake times were tracked against the circadian temperature cycle, certain
patterns emerged. One interesting pattern is that long periods of sleep generally
start at temperature peaks, while shorter sleep periods happen at temperature
troughs. Also, subjects rarely wake up as temperature is falling. These patterns
are so pervasive in external desynchronization that mathematical models of this
phenomenon are judged partly on their ability to incorporate them [3].

Due to the periodic nature of sleep, many mathematical models of the interplay
between sleep-wake cycles and circadian cycles use a system of coupled oscillators.
These models have seen varying degrees of success [3]. One struggle has been that
due to their complex non-linear natures, they must be solved numerically. In this
article, we will attempt to analyze and reproduce results found in Strogatz [3]; his
model is given by Equations (1). In contrast to models proposed in previous years,
Equations (1) can be solved exactly, so computer simulations are not needed. We
will then suggest a modification to this model and discuss research done in this
field since.

2. Mathematical Model

2.1. Motivation

Because we are dealing with periodic processes (namely circadian temperature
and sleep-wake cycle), we will imagine that each process operates on a circle.
Then each angle θ corresponds to a unique phase of the process. Applying this
to the case of circdian body temperature, we will arbitrarily assign θ1 = 0 to
be temperature troughs, and we’ll scale its period to 1 (as in 1 ’temperature-
day’). This would mean that "noon" in temperature-days roughly correspond to
temperature peaks (i.e. θ1(max) ≈ 0.5). Similarly, we will define sleep to always
begin at θ2 = 0 and scale its period to 1.

If we were oblivious to the effects of desynchronization on the sleep-wake
cycle and circadian temperature, we might be tempted to say that both of these
processes always move around their respective circles more or less linearly, like
a clock. After all, we usually rise and retire at roughly the same time every day.
But it only takes a small perturbation, such as staying up late or changing time
zones, to inevitably force the body into breifly lengthening its sleep-wake cycle to
compensate.

In more dramatic cases of internal desynchronization, like the one described
in [1, 2] sleep cycles were lengthened by a factor of 1.1 - 1.9 for weeks at a time
while circadian temperature cycles shortened (i.e.

.
θ1 decreased and

.
θ2 increased);
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and when internal synchronization spontaneously returned, sleep cycles would
shorten and temperature cycles would lengthen. This inverse relationship between
sleep and temperature cycles strongly suggests that each cycle sends feedback
into the speed of the other. Further inspection of [1, 4] shows that internal
synchronization occurs when the two cycles are in phase, which means that
frequencies are influenced by phase differences. Hence, we can characterize the
circadian temperature cycle and the sleep cycle as a pair of coupled oscillators:

.
θ1 = ω1 − C1 cos 2π(θ2 − θ1) (1a)
.
θ2 = ω2 + C2 cos 2π(θ1 − θ2) (1b)

where

0 ≤ θ1, θ2 < 1 (2)

and

ω1, ω2, C1, C2 > 0. (3)

This is what Strogatz [3] calls the PHASE model.

2.2. Structure

The constants ω1 and ω2 represent the preferred frequencies of each oscillator.
One way to interpret ω is to imagine that temperature and sleep cycles don’t
send feedback to each other. Then temperature and sleep would independently
oscillate at a constant rate of ω1 and ω2, respectively.

C1 and C2 reflect how strongly sleep-wake and temperature phases affect the
other. For instance, we can see that the larger C1 is, the more the temperature cycle
is slowed down from its preferred frequency, and the larger C2 is, the more the
sleep wake cycle is sped up. Because C1 and C2 affect the feedback term of each
equation, we’ll call them coupling strengths.

The factor 2π in each feedback term scales the period to 1, which allows us to
discuss phases in terms of "days" as opposed to radian angles.

Finally, we turn our attention to the (θ2 − θ1) and (θ1 − θ2) expressions. The
speed of each oscillator is modified by the difference in phase. Notice that by
symmetry of cosine, we can use (θ2 − θ1) and (θ1 − θ2) interchangibly. The
difference seen in this expression between the two equations is just an artifact of
the standard model of coupled oscillators, which uses sine functions instead.
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Figure 1: Temperature lows are defined to be θ1 = 0. Sleep is defined to be θ2 = 0. The strength
of the feedback from one oscillator to the other is dictated by phase differences and constants C1

and C2.

2.3. Dimensionless Form

It would be nice to have a way to quickly determine how changing parameter
values will effect the model’s predictions. Writing this model in dimensionless
form will allow us to easily identify the parameter relationships that reflect either
internal or external synchrony. Because internal synchrony depends strictly on
phase difference in externally desynchronized subjects, following [3] let

ψ(t) = θ1(t)− θ2(t) (4)

be the phase difference at time t. Then

.
ψ =

.
θ1 −

.
θ2

= (ω1 − C1 cos 2πψ)− (ω2 + C2 cos 2πψ)

= Ω− C cos 2πψ

(5)

where

Ω = ω1 −ω2 (6)

is the difference in preferred frequencies and

C = C1 + C2 > 0 (7)

is the total coupling strength.

27



Fall 2017 • Gonzaga Journal of Mathematical Sciences • Vol. III, No. 1

Notice that
.

ψ = 0 has a solution only when C > |Ω|. Now, let’s scale time
so we are dealing in terms of preferred frequencies. Because Ω has units of
frequency,

τ = Ωt (8)

is dimensionless time. Then (5) becomes

dψ

dτ
= 1− C

Ω
cos 2πψ. (9)

We already determined that we only have fixed points if C > |Ω|. This corresponds
to external synchrony. So, we only have synchrony if

k =

∣∣∣∣C
Ω

∣∣∣∣ > 1. (10)

Since both C and Ω are in units of frequency, C
Ω is a dimensionless group and our

final dimensionless form is

dψ

dτ
= 1− k cos 2πψ. (11)

3. Analysis

3.1. Linear Stability

We solve for the phase relation that is approached during synchrony, ψ∗, where
ψ∗ is the constant solution of

.
ψ = 0. Thus

0 = 1− k cos 2πψ∗

cos 2πψ∗ =
1
k

2πψ∗ = ± cos−1 1
k

ψ∗ = ± 1
2π

cos−1 1
k

.

(12)

To find which of the solutions is stable, we’ll evaluate d
.

ψ
dψ at each solution

d
.

ψ

dψ
(ψ∗) = 2kπ sin (2πψ∗) (13)

= 2kπ sin
(
± cos−1 1

k

)
. (14)
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Figure 2: Phase line for (11) with k > 1. When k = 1, a bifurcation occurs and a single fixed
point emerges. When k < 1 there fails to be any fixed points and external desynchronization
occurs.

Because the sine function is positive over all the values for which inverse cosine
is defined (namely [0,π]), the stable solution is

ψ∗ = − 1
2π

cos−1
(

1
k

)
. (15)

3.2. Further Analysis

One drawback of the PHASE model is that it incorrectly predicts that sleep
rarely occurs outside of a 10-hour window centered around temperature troughs,
whereas in free-run subjects, sleep also occurred frequently at about 9 hours after
the temperature trough. In other words, the data shows that the probabilty of
falling asleep significantly increases at two distinct phases, making it a bimodal
distribution. So, an effective remedy of this issue must change the unimodal dis-
tribution of sleep onset predicted by the PHASE model to a bimodal distribution.
We will attempt to do this by introducing a correction term to the sleep-wake
oscillator. Our new system looks like

.
θ1 = ω1 − C1 cos 2π(θ2 − θ1) (16a)

.
θ2 = ω2 + C2 cos 2π(θ1 − θ2) + C3e−(

sin2 π(θ1−µ1)
σ1

+
sin2 π(θ2−µ2)

σ2
). (16b)

We first notice that we have an expression that is reminiscent of a normal
distribution. Although they are not normal distributions (because they are not
scaled), they function much like a normal distribution would. These will function
as our "on-off switch" for the correction term. If θ1 and θ2 simultaneously fall
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Figure 3: As seen in the frequency diagrams below, there is a discrepancy between the PHASE
model and pooled data. The PHASE model predicts a unimodal distribution with sleep mostly
occuring near temperatire troughs. The data shows another peak at about 9 hours after the peak,
making it bimodal.

within a certain range (determined by σ1 and σ2) of their respective "means" µ1
and µ2, the sleep cycle will be accelerated, effectively inducing sleep. While θ1
and θ2 do not simultaneously fall within their ranges, the entire correction term
is essentially zero and will have negligible affect on the overall system. What
this allows us to do is to take sleep onsets for which the original PHASE model
incorrectly predicts happen at a a certain temperature phase and move them to
a temperature phase that is more reflective of the data. By choosing σ1 and σ2
(which loosely function as our “standard deviations”) to be sufficiently small,
we can ensure that the correction term is only activated when it hits a certain
temperature-sleep phase ratio.

4. Results

Looking back at our original model, let’s see what it has to say about the rela-
tionship between the circadian phase φs and sleep duration ρ. Experimental data
shows that sleep beginning near temperature peaks tend to be longer than those
that begin near temperature troughs. To make analysis possible, we will make the
simplifying assumption that the sleep phase sends essentially no feedback into
the circadian temperature phase (which is not unreasonable, given the data). The
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circadian oscillator now moves at a constant rate. Scaling to that rate, equation
(1a) becomes

.
θ1 = 1 (17)

and by arbitrarily setting θ1(0) = 0,

θ1(t) = t. (18)

Solving for θ2(t) is a bit more difficult. Our game plan will be to figure out ψ(t)
and use that to determine θ2(t) = θ1(t)− ψ(t). We know that

.
ψ = Ω− C cos 2πψ (19)

where Ω, in this case, is 1−ω2. As before, letting τ = Ωt,

ψ′ = 1− k cos 2πψ. (20)

Separate variables and integrate to get∫ dψ

1− k cos 2πψ
=
∫

dτ. (21)

Substitute u = tan πψ. Then cos 2πψ = 1−u2

u2+1 . Substitute these into (20) to get

1
2π

∫ 2du
u2+1

1− k
(

1−u2

u2+1

) =
∫

dτ. (22)

Simplify and factor (1− k) from integral to get

1
π(1− k)

∫ du

u2 (1+k)
(1−k) + 1

=
∫

dτ (23)

Let z2 = u2(1+k)
(1−k) . Then

√
1− k

π(1− k)
√

1 + k

∫ dz
z2 + 1

= τ + constant. (24)

Since the antiderivative of (24) is tan−1 z, we can back substitute to get

1
π
√

1− k
√

1 + k
tan−1

(
tan (πψ)

√
1 + k√

1− k

)
= Ωt + constant. (25)
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Figure 4: 1) Pick a temperature phase at sleep onset and find the time at which it happens. 2)
Find the sleep phase at that time. 3) Add F to the sleep phase to find the wake time. 4) Subtract the
time at wake from the time at sleep to get the sleep length. 5) Make a graph of all possible values

Writing ψ explicitly as a function of t yields

ψ(t) =
tan−1 (b tan (πβt + C0))

π
, (26)

where

b =

√
1− k
1 + k

and β = Ω
√

1− k2

and C0 is a constant that contains our initial condition, ψ0, and parameter values
Ω and C. With (26), we now have a way of determining θ2(t), which is t− ψ(t).
We will use graphical methods to determine the ρ to φs relationship by following
the steps in Figure 4.

5. Discussion

We have reviewed a relatively simple model of sleep behavior in free-run subjects.
This model is simple enough for us to retrieve useful data from it using analytic
and graphic methods. We are able to establish synchrony and de-synchrony by
varying parameters and rewrite it in dimensionless form with only one parameter.
We have also looked at a corrected version of the PHASE model. A huge downside
to this correction is that the model is no longer tractable, which was the primary
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motivation for the PHASE model in the first place. The correction is also in no
way informed by any biological or psychological processes endogenous of the
human body; it is merely a cooked up way of getting the data to match a little
bit better. Further work with the corrected model would include optimizing the
parameters to get an optimal shift of sleep onsets.
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Abstract

The French mathematician Augustin Cournot introduced a theory of com-
petition in 1838 to study a market structure, known as a duopoly, in which
two firms compete in the absence of other competitors on the amount of
product output [2]. We report on the work of Puu [4], in which he examines
Cournout’s duopoly theory under the simplifying assumptions of constant
unit production costs and isoelastic demand. Puu examines two cases: (i)
each firm adjusts its output in the current time-period based upon its com-
petitor’s production in the previous time-period, and (ii) each firm adjusts
their production in the current time-period based on a weighted average of
its previous production and that of its competitor. By examining the reaction
functions of the firms, it is found that as a model parameter is varied, the
stable fixed point known as the Nash Equilibrium becomes unstable and a
period doubling route to chaos occurs. We also consider an extension of Puu’s
work by introducing a third competitor to form a triopoly. Although Puu’s
assumptions make the model unrealistic for serious economic forecasting, the
inherent chaotic behavior is interesting to study from a mathematical context.

1. Introduction

T. Puu [4] investigates the Cournot duopoly model. Under the assumptions of
isoelastic demand and constant unit production costs, the duopolistic Cournot
model exhibits chaotic behavior when the parameter values are within a certain
interval.

A duopoly is a market in which only two firms provide a certain product or
service or there are only two firms that have market power; that is, there are two
firms with the ability to raise and maintain prices above the level that would be
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expected in the presence of competition. A third firm could exist in a duopoly, but
if they do not impact price of the market good, then they are essentially irrelevant
and the market is a duopoly.

We examine the Cournot model for duopolies [2], which employs the following
basic assumptions: firms are competitive, that is, they do not collude, and the
quantity of goods produced by the individual firms depend on the quantity
produced by the competing firm. This is due to the assumption that firms adjust
prices of their goods by adjusting the quantity they produce, and that price is
based on the total quantity of goods produced in the market. As total quantity
produced rises, price will decrease, and as total quantity produced falls, prices
will rise. The implications of this dynamic are that it is in the best interest of both
firms to not produce too many units of the good, otherwise the price level will
not be high enough for them to cover their costs of production. If the firms choose
to operate at a relatively low level of production, then the competing firm will
increase their quantity. By doing this, the high quantity firm benefits from a high
price due to their competitor producing few units of the good, and they also sell
more units of the good.

To assist with understanding the paper, let us review some economic terminol-
ogy and concepts. A demand curve is a curve that shows the relationship between
the price and the quantity demanded of a good, with the variables having a
negative correlation. As price of a good increases, the quantity demanded for the
good decreases. This relationship also holds in reverse, with quantity demanded
for a good rising when the price of the good drops.

Elasticity describes how sensitive quantity demanded is to price change. A
highly elastic demand curve would mean that a small increase in price would lead
to a large decrease in quantity demanded, and a small decrease in price would
lead to a large increase in quantity demanded. An isoelastic demand curve is a
demand curve in which the elasticity is constant for every given point along the
curve.The general isoelastic demand function is given by

Q(p) = Apη

where A and η are constants. The parameter η represents the constant elasticity
of demand. This assumption is used in the definition of price given by Equation
(1) of the next section. On a non-isoelastic demand curve, the price sensitivity
of a good would change depending on the current quantity demanded and the
current price.

A firm that has constant unit production costs (also known as constant marginal
costs) is a firm in which producing in bulk does not decrease the cost of producing
each unit of good (no economies of scale). For example, if a soda company were
to have constant unit production costs, this would mean that the cost per bottle
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would not change if they produced ten bottles of soda, or one-million bottles of
soda.

Finally, the Cournot Nash Equilibrium is the quantity of goods produced by
the firms in a duopoly in which they would make less profit if they increased
or decreased their chosen quantities [3]. To better illustrate this, let us assume
that two firms in a duopoly are currently producing at their Nash Equilibrium
quantities. If either firm were to try to increase their quantity production levels,
the negative impact from the drop in the price on their profits would outweigh
the profit increase from selling more units of their good. If either firm were to
decrease their quantity production levels, the positive effect on the firms’ profits
from the increase in price would be outweighed by the negative impact the lower
level of sales would have on their profits. The Cournot Nash Equilibrium is
the more specific version of the general Nash Equilibrium that focuses on the
quantitiy the firms produce due to the nature of the Cournot model.

2. Derivation of the Mathematical Models

Below we define the variable of the Cournot model. We note that the variables
are dimensionless.

p = price
x = supply of first competitor
y = supply of second competitor
a = constant unit cost of first firm
b = constant unit cost of second firm

We will begin by defining price as

p =
1

x + y
. (1)

The denominator is simply the sum of the quantity of goods supplied by the two
firms.

We can now represent profit for each firm as the difference of revenue (the
product of quantity and price) and cost (the product of unit production cost and
quantity). We will define Π1 as profit for firm 1, and Π2 as profit for firm 2.

Π1(x, y) =
x

x + y
− ax (2a)

Π2(x, y) =
y

x + y
− by (2b)
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To find where the firms maximize profit, first we will take the partial of Π1 with
respect to x and the partial Π2 with respect to y. It is sufficient to take the partial
of Π1 with respect to x and of Π2 with respect to y since x corresponds only to the
quantity produced by firm 1, and y corresponds only to the quantity produced by
firm 2.

∂

∂x

(
x

x + y
− ax

)
=

(x + y)− x
(x + y)2 − a (3a)

∂

∂y

(
y

x + y
− by

)
=

(x + y)− y
(x + y)2 − b (3b)

We now set the partial derivatives in Equation (3) equal to zero to obtain

y
(x + y)2 − a = 0,

x
(x + y)2 − b = 0.

Solving for x in terms of y for the former, and solving for y in terms of x for the
latter, we produce the reaction functions

x(y) =
√

y
a
− y (5a)

y(x) =
√

x
b
− x. (5b)

The focus of the Cournot Model are these reaction functions. The reaction
functions show that x depends on a and y, and y depends on b and x. The
goal of a typical firm is to maximize profits. We are able to find profit maximizing
functions for the two firms in this model by substituting the reaction functions
into the profit functions, as follows√

y
a − y(√

y
a − y

)
+ y
− a

(√
y
a
− y
)
= 1− 2a

√
y
a
+ ay,

√
x
b − x(√

x
b − x

)
+ x
− b

(√
x
b
− x
)
= 1− 2b

√
x
b
+ by.
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Figure 1: Reaction Functions of Equations (5). The blue curve is a plot of x(y) and the red curve
is a plot of y(x). The intersection of the two curves represents the Nash Equilibrium Point.

Using the above, we define our maximized profit functions by

Πm1 = 1− 2
√

ay + ay, (7a)

Πm2 = 1− 2
√

bx + bx. (7b)

An important note to make is that the maxima are attained at y = 1
4b = x and

x = 1
4a = y. This will be important later.

Figure 1 shows both reaction functions on the x, y plane. Firm 1’s reaction
function touches the y-axis at (0, 1

a ) and Firm 2’s reaction function touches the
x-axis at (1

b , 0). The significance of these points will be discussed later. This
system has two fixed points, the origin (0, 0) and the intersection point of the
reaction functions, which is the Nash Equilibrium point. The intersection point is
found by solving simultaneously for the two reaction functions, which results in
the following

(x∗, y∗) =
(

b
(a + b)2 ,

a
(a + b)2

)

2.1. Taking Turns Model

The first discrete time model is looking at the reaction functions when the firms
adjust by taking turns. This means that firm 1 reacts or adjusts at any given time
t by taking into consideration what firm 2 did at time t− 1, and similarly, firm 2
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reacts or adjusts at any given time t by taking into consideration what firm 1 did
at time t− 1.

xt =

√
yt−1

a
− yt−1 (8a)

yt =

√
xt−1

b
− xt−1 (8b)

2.2. Simultaneous Decision Model

The second discrete time model will assume that the competing firms make
their decisions simultaneously. However, the firms will adjust their decisions
by adjusting their previous decision toward their new optimal output. The
Simultaneous Decision Model presented by Puu [4] is

xt = xt−1 + θ

(√
yt−1

a
− yt−1 − xt−1

)
, (9a)

yt = yt−1 + θ

(√
xt−1

b
− xt−1 − yt−1

)
. (9b)

The parameter θ lies in the interval 0 ≤ θ ≤ 1. It shows how much the firms care
about the decisions of their competitor. If they do not care at all, θ = 0. In this
case

xt = xt−1 and yt = yt−1,

that is, their decision in the current time period is base strictly upon what they
did in the previous time period. At the opposite extreme, if θ = 1, we obtain the
reaction functions of the Taking Turns model given by Equations (8), in which
case their decision is based strictly upon the output of their competitor.

3. Linear Analysis

In this section we discuss the fixed points of the two discrete time models given
by Equations (5) and (10) and their linear stability.
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3.1. Taking Turns Model1

We begin by defining the nonlinear map F : R2 → R2 by

F
(

xt
yt

)
≡


√

yt
a − yt√

xt
b − xt.


so that(

xt+1
yt+1

)
= F

(
xt
yt

)
.

As with one-dimensional systems, fixed points of F satisfy

F
(

x∗

y∗

)
=

(
x∗

y∗

)
.

It is readily seen that

F
(

0
0

)
=

(
0
0

)
,

thus the origin is a fixed point. A second nontrivial fixed point is found to be(
xe
ye

)
=

 b
(a+b)2

a
(a+b)2

 .

The point (xe, ye)T is commonly referred to as the Nash Equilibrium of the system.
Using standard techniques, we find that the Jacobian matrix of the map F is

J =

 0 1
2

√
1
ay − 1

1
2

√
1

bx − 1 0

 .

Stability of the Origin. Note that the origin is a repeller (unstable) since the
Jacobian matrix is unbounded as (x, y)T ↓ (0, 0)T. Let us consider an intuitive
explanation for this observation. At the point (0, 0)T neither firm is producing
any product. This means that there is a market of people who want a certain good
but nobody is supplying it. Eventually, one of the firms will realize that there
is a market for a product or service but no product or service is in production.
This will prompt the firm to enter the market. Recognizing that there is profitable
business at hand, the other firm will enter the market to compete. Hence, we see
that the fixed point is fundamentally unstable.

1This section contains substantial revisions by the editor.
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Stability of the Nash Equilibrium Point. Evaluating the Jacobian matrix at the
Nash Equilibrium point yields

J|(xe, ye) ≡ Je =

(
0 −a+b

2a
a−b
2b 0

)
.

Observe that the trace of Je equals 0 and the determinant of Je is

det (Je) =
(a− b)2

4ab
.

Thus, the characteristic polynomial is

σ2 +
(a− b)2

4ab
= 0,

which implies that the eigenvalues are pure imaginary numbers given by

σ± = ±i
|a− b|
2
√

ab
,

where i =
√
−1. The condition for stability requires that |σ±| < 1. Therefore, a

and b must satisfy

(a− b)2 < 4ab.

This yields

a2 − 2ab + b2 < 4ab⇒
( a

b

)2
− 6

( a
b

)
+ 1 < 0.

Solving yields 3− 2
√

2 < a/b < 3 + 2
√

2. This means that if the ratio of the firms’
unit productions costs lies within this range, then the Nash Equilibrium fixed
point is stable, if it does not, then the equilibrium point is unstable.

We now determine conditions such that xt, yt > 0 for all t, which is necessary
so as to avoid complex values. It was found from Equation (8a), that the reaction
functions reach their respective maxima at y = 1

4a = x. In order to avoid complex
numbers, we require y( 1

4a ) <
1
a , that is√

1
4ab
− 1

4a
<

1
a
⇒ a

b
<

25
4
⇒ b

a
<

4
25

Similarly, using Equation (8b) we find√
1

4ab
− 1

4b
<

1
b
⇒ b

a
<

25
4
⇒ a

b
>

4
25

We see that the ratio of unit production costs must be in the interval ( 4
25 , 25

4 ) for
the output of the model to be real-valued.
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Figure 2: Strange attractor for the Simultaneous Decision Model. The abscissa, x(n) ≡ xt,
represents the production level of firm 1 while the ordinate, y(n) ≡ yt, represents the production
level of firm 2. Starting at the initial point (x0, y0) = (0.55, 0.07), Equations (9) were iterated
200,000 times using Mathematica 11.2 with θ = .9, a = .2, and b = 1.36592. For these parameter
values, the Nash Equilibrium point is a repeller (see Editor’s note in Section 3.2) and the orbit of
(0.55, 0.07) spirals away from the unstable Nash Equilibrium to the stable “chaotic leaf".

3.2. Simultaneous Decision Model

The fixed points and their related stability are the same for the Simultaneous
Decision model as for the Taking Turns model.

Editor’s note. While the Simultaneous Decision model and the Taking Turns
model share the same fixed points, the economically relevant parameter values
and the stability criteria for the Nash Equilibrum now depend upon the parameter
θ as well as a and b. For stability, the parameters a, b and θ must satisfy

θ <
8ab

(a + b)2 . (10)

4. Results

It is claimed that both models can exhibit chaotic behavior and an interesting
chaotic attractor is produced by the Simultaneous Decision modelwhen θ = 0.9 as
shown in [4]. Also shown in [4] are cobweb diagrams for both models; however,
we were not able to reproduce these figures.
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Editor’s note. Figure 2 (contributed by the editor) shows a stable chaotic attractor
for the Simultaneous Decision model when a = 0.2, b = 1.36592, and θ = 0.9. For
these values the Nash Equilibrium is a repeller (unstable) which can be seen from
Equation (10) by noting that θ = 0.9 is not less than 8ab/(a+ b)2 ≈ 0.8913. Related
ideas to explore are the fractal dimension of the attractor and the parameter ranges
for which at least one Liapunov exponent is greater than zero.

5. Further Analysis

Puu [4] collaborated with Agliari and Gardini to examine a triopoly Cournot game
with his assumptions of constant unit production costs and isoelastic demand [1].
A triopoly is just a duopoly but with three firms instead of two. We will keep all
of the same variables from our duopoly model, but we will introduce some new
variables. We let z be the quantity produced by firm 3, and c be the constant unit
production costs of firm 3. The new price function would be

p =
1

x + y + z
. (11)

The profits of the individual firms are

Π1 =
x

x + y + z
− ax

Π2 =
y

x + y + z
− by

Π3 =
z

x + y + z
− cz

with Π3 being the profit of firm 3, Π2 being the profit of firm 2, and Π1 being the
profit of firm 1.

To obtain the reaction functions for the triopoly, we will take the partial
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derivatives as shown

∂

∂x

(
x

x + y + z
− ax

)
=

(x + y + z)− x
(x + y + z)2 − a

∂

∂y

(
y

x + y + z
− by

)
=

(x + y + z)− y
(x + y + z)2 − b

∂

∂z

(
z

x + y + z
− cz

)
=

(x + y + z)− z
(x + y + z)2 − c

and then set these partial derivatives equal to 0

x(y, z) =
√

y + z
a
− y− z

y(x, z) =
√

x + z
b
− x− z

z(x, y) =
√

x + y
c
− x− y.

Looking at the reaction functions for the triopoly, we can see that they are very
similar to the duopoly reaction functions. However, let us perform an experiment
to show an interesting phenomenon that occurs in the Cournot triopoly.

5.1. Triopoly Experiment

To see the interesting behavior of the triopoly model, we will compare the results
of quantity of goods produced by the individual firms in both the duopoly and
triopoly model.

First we will assign arbitrary constant unit production costs to the firms, with
a = 0.2, b = 0.3, and c = 0.4. Using these parameter values for the duopoly
reaction functions and solving for x and y, we get x = 1.2 and y = 0.8 (c is
irreverent for the duopoly model). When these values are applied to the triopoly
reaction functions, we obtain x ≈ 1.23, y ≈ 0.74, and z ≈ .25. When the third
firm enters the market, intuition tell us that due to increased competition, firms
already in the market will lose market share (customers) which should be seen
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as lower quantities produced by the individual firms. Despite this being true for
firm 2 with the value of y being lower with firm 3 entering the market, firm 1
actually increases their quantity produced with firm 3 entering into the market.
A possibility for this occurring could be that firm 3 entering the market impacts
the profit of firm 2 more severely than the profit of firm 1 due to firm 1 having
relatively low unit production costs. Looking at equation (11), we notice that the
price decreases as total quantity produced rises. When firm 3 entered the market,
the price of the good lowered, which then causes revenue for all three firms to
drop. However, due to firm 2 having higher unit production costs than firm 1,
firm 2 would have to decrease output to increase the price so that firm 2 can
cover their costs of production. When this occurs, firm 1 would increase quantity
produced and would still make a profit with a low-priced good, due to their low
unit production costs.

6. Discussion

We see that the simple Cournot Duopoly model, given Puu’s conditions of isoe-
lastic demand and constant unit production costs produces chaotic behavior
within certain parameter values. Due to the minimal number of parameters and
strict conditions associated in the model, it does not necessarily model a realistic
duopoly competition scenario. With this in mind, we must take into consideration
that this model is mostly useful from a mathematical analysis standpoint, and
for qualitative analysis of economic situations. The model is intriguing largely
due to the fact that we can observe chaotic behavior within such a simple model,
and demonstrates that minor adjustments in initial conditions can cause period
doubling routes to chaos. In order to better represent this model as economically
feasible, we would relax the conditions of constant unit production cost, and
possibly of isoelastic demand as well. This would make the model more realistic
but also more difficult to analyze mathematically.
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Abstract

The composition of simple genetic regulatory elements facilitates the control
of gene expression levels in biological systems. The study of these mechanisms
yields crucial insight into the implementation details of cell-fate decision
processes. Here we present an analysis of a two dimensional, highly nonlinear
model of a proposed genetic toggle switch presented in [1]. This analysis
includes quantitative applications of linear stability analysis and bifurcation
analysis to elucidate the critical properties of the system. A qualitative
explanation of the underlying factors that determine these critical properties
is included as well. We find that the model yields the desired properties
of a genetic toggle switch, notably bistability characterized by a separatrix
isolating two basins of attractions containing the high and low states of the
switch. Only if a number of requirements are met does this model manifest
these properties.

1. Introduction

In biological systems, genetic regulatory circuits control the expression of genes
through the use of various molecular regulators. Notable among the collection
of regulatory elements that interact to determine gene expression levels are
repressors, promoters, and inducers. From these simple elements it has been
shown [1] that it is possible to construct a mechanism in gene-regulatory networks
that acts as a genetic toggle switch. The existence of this mechanism results in
two steady states within the system.

We investigate the mathematical nature of this mechanism by examining the
two-dimensional, nonlinear model that governs its behavior. Additionally, we
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investigate the conditions necessary for this bistability and the properties of the
resulting system under various constraints. We give a qualitative description of
the proposed model and apply linear stability analysis and bifurcation analysis
to the system to elucidate these properties. This research contributes to the
theoretical understanding of how a simple mechanism, such as the genetic toggle
switch, can be implemented in biological systems and the properties that arise
from the existence of such mechanisms. The understanding of these regulatory
switches has implications for understanding the components in the cell-fate
decision making process, and sheds light on a given initial condition’s effect of the
eventual expression of some gene. We promote this line of inquiry by studying
the qualitative behavior a collection of these simple mechanisms can yield in
regulatory circuits.

2. Mathematical Model

The dimensionless mathematical model describing the behavior of the genetic
toggle was derived in [1] from a biochemical rate equation formulation of gene
expression from [2-5]. It is given as

du
dt

=

(
α1

1 + vβ

)
− u (1)

dv
dt

=

(
α2

1 + uγ

)
− v (2)

In this model u is the concentration of repressor 1, v is the concentration of
repressor 2, α1 is the effective rate of synthesis of repressor 1, α2 is the effective
rate of synthesis of repressor 2, β is the cooperativity of repression of promoter 2
and γ is the cooperativity of repression of promoter 1 [1].

Cooperative repression of constitutively transcribed promoters, a fundamental
aspect of the genetic toggle switch, is manifested in the first term in each equation.
Degradation/dilution of the repressors, another fundamental aspect of the genetic
toggle switch, is manifested in the second term in each equation. α1 and α1
describe the net effect of RNA polymerase binding, open-complex formation,
transcript elongation, transcript termination, repressor binding, ribosome binding
and polypeptide elongation [1].

The bistability of the model, which gives rise to the desired properties of the
genetic toggle switch, are the result of the single unstable and two stable fixed
points from the intersection of the nullclines

du
dt

= 0,
dv
dt

= 0. (3)
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Figure 1: β, γ = 0

3. Results

Linearization of the model yields the Jacobian J such that

J =

 −1 −α1βvβ−1

(1+vβ)
2

−α2γuγ−1

(1+uγ)2 −1

 , (4)

with

tr(J) = (−1) + (−1) = −2 (5)

det(J) = (−1)(−1)− (
−α1βvβ−1

(1 + vβ)
2 )(
−α2γuγ−1

(1 + uγ)2 ) (6)

The cooperativity of repression of the promoters, quantified by parameters
β and γ in (1) and (2), determine the qualitative shape of the nullclines and
consequently the number of fixed points existing within the system. In physical
systems, this cooperativity can result from multimerization of the repressor
proteins and cooperative binding of the multimers to more than one operator site
in the promoter region [1]. In the extreme case of an absence of any cooperativity,
described by β, γ = 0, the phase plane exhibits a single fixed point at (α1/2, α2/2).
Evaluating (4) at this point yields tr(J) = −2 < 0 and det(J) = 1 > 0, indicating
that the fixed point is stable for all values of α1 and α2. This monostable property
of the system is present for all β, γ < 1, although finding an analytic solution for
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Figure 2: β, γ < 1

the fixed point becomes nontrivial. An example of a system with β, γ < 1 can be
seen in Figure 2.

At β, γ > 1, the characteristics for the genetic toggle switch become possible. In
physical terms this indicates that the existence of a genetic toggle switch requires
cooperative repression of transcription. The bistability is a result of the nullclines
obtaining a sigmoidal shape for β, γ > 1, which intersect at three points. This is
illustrated in Figure 3.

Figure 3: β, γ > 1 and Balanced α1, α2
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Evaluating (4) at the fixed points in Figure 3 yields:

Table 1: Evaluating J at the 3 Fixed Points

Fixed Point Trace Determinant Classification

State 1 −2 .98 Stable
State 2 −2 .98 Stable
State 3 −2 −1.81 Saddle Point

It is possible, however, for the system to only exhibit a monostable state for
β, γ > 1, as illustrated in Figure 4. This arises when the rate of synthesis of the
two repressors are not balanced, as in Figure 4. In this case, the parameter value
of α1 is an order of magnitude greater than he parameter value of α2. Hence,
the system becomes monostable. Evaluating (4) at the only fixed point yields
tr(J) = −2 < 0 and det(J) = 1 > 0, indicating that the system has a single, stable
fixed point.

Figure 4: β, γ > 1 and Unbalanced α1, α2

Thus, another necessary condition for the toggle switch is that parameters α1
and α2 must be balanced. This condition is illustrated in Figure 5 from [1].
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Figure 5: Bistable Region

Equation (7) gives us a hint as to where the bifurcation point and the birth of
bistability occurs. Specifically, there is a bifurcation at

1 = (
−α1βvβ−1

(1 + vβ)
2 )(
−α2γuγ−1

(1 + uγ)2 ) (7)

When the properties of the genetic toggle switch are satisfied, the phase space
is composed of two basins of attraction separated by a separatrix. When the initial
condition is anywhere above the separatrix, the system will eventually settle in
State 1. When the initial condition is anywhere below the separatrix, the system
will eventually settle in State 2. This is illustrated in Figures 6 and 7.

Figure 6: Time Series for (u0, v0) = (10, 12)
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Figure 7: Separatrix and Various Initial Conditions

4. Discussion

In this analysis we have seen that the model does not guarantee the properties of
a genetic toggle unless two conditions are satisfied.

First, the cooperativity of repression of both promoter 1 and promoter 2,
quantified in parameters β and γ, must be greater than 1. This indicates that
cooperative repression of transcription is a necessary property for this system’s
bistability. Second, the effective rate of synthesis, which is quantified in α1 and
α2 must be balanced. If the ratio of synthesis for the individual repressors is too
large, then only a monostable state results. Figure 5 and Equation (7) provide a
description of this bistable region.

The key properties of the toggle switch are the separatrix, which separate the
two basins of attraction, and bistability. Using a biological interpretation, these
properties result in exclusive gene expression. This is a fundamental mechanism
in the understanding and production of complex genetic networks.

5. Further Analysis

Extending this model to include a third repressor concentration would be an
interesting next step. The work done in this analysis could be used to ensure that
the resulting three-switch has the desired biological properties. Additionally, it
was proposed in [1] that the toggle switch forms an addressable cellular memory
unit. Understanding how these genetic switches can be used to form self-contained
genetic programs would advance this work.
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Abstract

Nonlinear dynamical models of immune-tumor interaction give insight
into which immune defenses are most effective in tumor lysis. We
analyze three coupled nonlinear differential equations that incorporate
CD8+ T-cells and NK cells to understand the destructive dynamics
and possible immunotherapy applications. The accuracy of the T-cell
competition term is analyzed through data fitting, and it is concluded
that a rational form of the competition term is necessary. We then
successfully reproduce the full immune system and the lack NK cell
simulations of the mathematical solution, but find a discrepancy in the
simulation in the absence ot T-cells. Last, we make two simplifying
assumptions in which tumor cell population is significantly larger
than T-cell population and vice versa. The analysis of large tumor cell
population show that with no competition term of T-cells/tumor cells
the model acts the same as when no T-cells are present. When the
T-cell population significantly exceeds tumor cells the model shows
tumor growth control for certain challenges of tumor.

1. Introduction

The Immune system has many mechanisms to deal with tumor growth, however
cancer still persists as the second deadliest disease in the United States [1]. The
development and understanding of the immune system response to tumor cells is
crucial to creating new potential cures for cancer in the field of immunotherapy.
Immunotherapy utilizes substances from other organisms to treat cancer by
helping the immune response. Mathematical modeling of immune response to
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tumors is extremely important to quantify new cancer treatment’s effectiveness as
well as advance immunotherapy techniques. Many models have been proposed
for the immune response of tumors, see for example [2]. The focus of [2] is on
natural Killers (NK) and CD8+ T-cells, two suppressors for various tumor cell
lines.

T-cells are a type of white blood cell generated in the thymus that circulate
through the body looking for abnormalities. The T-cell is the primary response
of the immune system to infected cells because they have direct recognition and
destruction tools. Specifically, CD8+ T-cells differentiate into cytotoxic cells that
look for pathogens and kill infected cells within the body.

Natural Killer cells are also a type of lymphocyte and are part of the Innate
immune system. NK cells are activated in response to interferons or Macrophage-
derived cytokines. NK cells are unique in that they do not require pre-stimulation
before they perform their function. These cells are activated by cytokines which
trigger them to infiltrate pathogen-infected tissue. NK will cause apoptosis of the
cell, not allowing for spread of the virus.

The model presented in [2] utilizes data from mouse tumor cell lines where
modifications were created to express higher levels of immune bound ligands.
Human data from melanoma patients treated with highly reactive T-cells was also
relied on. The analysis of the model demonstrates the effectiveness of immune
response from CD8+ T-cells as well as NK cells. Immunotherapy will also be
explored with a further understanding of how the immune response works and
what can be strengthened to try and defeat cancer. This paper aims to analyze the
proposed model and interpret the implications of the model to cancer research.

The model under consideration is highly nonlinear with 16 parameters and
cannot be nondimentionalizied efficiently so the authors rely on numerical analy-
ses to explore the model’s dynamics. We will show the thought process behind
the competition term for CD8+ T-cell/tumor lysis and include the data fitting
experiments of [2]. We then recreate computational solution graphs to the model
and compare this with the solutions applying the absence of T-cells and then NK
cells. We conclude the same as [2], that both NK and T-cells are needed to control
tumor growth. We then explore two simplifying assumptions which allow us
to employ certain standard analytic techniques. In particular, we consider the
special cases where it is assumed that (i) the tumor cell population is significantly
larger than the CD8+ T-cell population and (ii) the CD8+ T-cell population is
significantly larger than the tumor cell population.
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2. Mathematical Model

The Mathematical Model in [2] that we will be considering has been developed
using the mouse and human data mentioned previously. The system utilizes
the results of the mouse data to show that rejection of tumors in mice were
largely due to NK and CD8+ T-cell interactions with tumor cells. The human data
shows patients with melanoma who were treated with highly selective T-cells
that exhibited strong immune responses. The data considered creates biological
assumptions that help shape the model. They are as follows:

1. Tumor cells grow logistically in the absence of immune response.

2. Both NK and CD8+ T-cells can kill tumor cells.

3. Tumor cells have the potential to cause cytocidal activity in noncytotoxic
cells.

4. NK cells are always present even in the absence of tumor cells

5. CD8+ T-cells are recruited once tumor cells are present.

6. Each NK and CD8+ T-cell will eventually become inactivated after a certain
number of encounters with tumor cells.

The assumptions above lead to three coupled differential equations in which the
cell populations are represented by

T(t), tumor cell population at time t.
N(t), total level of NK cell effectiveness at time t.
L(t), total level of tumor specific CD8+ T-cell effectiveness at time t.

In terms of representations, the equations can be explained by:

rate of change of tumor cell population = (growth and death rate) - (cell-cell
kill rate)

rate of change of NK or T-cells populations = (growth and death rate) +
(recruitment rate) - (inactivation rate)

Substituting the proper mathematical forms for the growth and death rate, the
cell-cell kill term, the recruitment rate, and the activation rate yields the following
system of differential equations.

dT
dt

= aT (1− bT)− cNT − D (1)
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dN
dt

= σ− f N +
gT2

h + T2 N − pNT (2)

dL
dt

= −mL +
jD2

k + D2 L− qLT + rNT (3)

where,

D =
d
( L

T
)λ

s +
( L

T
)λ

T. (4)

The first term of Eq. (1) reflects assumption (1) because if this was the only term
it amounts to logistic tumor growth. The second term in Eq. (1) shows the rate at
which tumor cells are killed by NK and therefore it reflects assumption (2). Eq. (4)
appears at the end of Eq. (1) and can be thought of as the rate at which tumor cells
die from CD8+ T-cells, though it will be explained in more detail below. Eq. (2)
shows a constant rate of production of NK cells, assumption (4), through the first
term, σ, as well as the death rate of NK cells in the second term. The third term
expresses the recruitment rate of NK cells by presence of tumor cells and displays
assumption (3). The fourth and last term in Eq. (2) shows the inactivation of NK
cells by interaction with tumor cells which mathematically formats assumption
(6). Eq. (3) has the same basic structure as Eq. (2) and uses the same assumptions,
except for a few exceptions. First, there is not a constant flow of CD8+ T-cells
because T-cells are only activated when tumor cells are present so this absence of
a term uses assumption (5). The only other difference is that Eq. (3) has an added
term at the end that accounts for the recruitment of T-cells by the interaction of
NK cells and tumor cells. T-cells are recruited by the presence of tumor cells alone
as well, but they activate at a higher rate when increased levels of NK cells are in
the body. Figure 1 provides a description of all model parameters.

3. Results

The results of [2] rationalize the need for Eq. (4). The competition term between
the tumor cells and either the NK cells or the CD8+ T-cells have fundamentally
different forms. The first place to begin when creating competition terms is to
make the assumption that the effector cells (NK or T-cells) reduce tumor cell
population proportionally to the populations of both the effector cells and the
tumor cells. This leads to simple product terms like −cNT (representing the NK
and tumor interaction) or −αLT (representing a hypothetical CD8+ T-cell and
tumor interaction) in which c and α are parameters measuring the effectiveness
of the immune cells. To test if these competition terms are accurate, the model
was graphed against the experimental effector/target lysis data. In Figure 2, the
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Figure 1: Estimated mouse parameters. See Table 1 in de Pillis [2].
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Figure 2: NK cell lysis. This graph from [2] shows mathematical predictions from the model
(smooth curves) plotted against actual experimental (squares and circles). The shallow curve
predicts lysis percentages for control cells, whereas the steep curve predicts percentages for the
ligand-transduced cells.

effector/target lysis data with ligand and control transduced cells is graphed
with the NK competition term. The model accurately produces a simulation of
experimental interaction of NK and tumor cells so the power competition term is
sufficient for representing NK/tumor lysis.

The same graphical analysis for the T-cell competition term does not show the
same accuracy. Instead, the experimental data fit with curves produced by the
rational forms found in Eq. (4). Figure 3 (top) shows four plots where the left two
represent the model plotted with the T-cell lysis data that is control transduced
and the right two show the T-cell lysis data that is ligand transduced. Each set
of data is plotted with the power model and the rational model. The plot in
Figure 3, at the bottom, shows a comparison of numerical error between the two
model predictions. In the control transduced lysis data, either competition term
accurately portrays the data, but in the ligand transduced data, the rational model
has significantly less error than the power model. This data fitting experiment
showed that the rational model shown in Eq. (4) provided the right model for
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the T-cell/tumor lysis. The s parameter in Eq (4) represents the steepness of the
curve, the λ term shows how lysis rate depends on effector/target ratio, while the
parameter d is the maximum lysis rate of the T-cells.

The rational model in Eq (4) is known as phenomenological because it models
observable outcomes and not direct underlying mechanisms. Because of this, the
rational model was further analyzed using a similar data fitting experiment, but
this time using the human CD8+ T-tumor lysis data. Figure 4 shows the results
of the comparison of the power model with the rational model looking at two
patients data. The top graph shows the power model predictions and it is easily
seen that the model does not fit the data. The bottom graph, showing the rational
model plotted with the same patient data, accurately predicts cell lysis for the
human data. This further validates the need for the rational model.

The rational form of the competition term for CD8+ T-tumor lysis is established,
so the sensitivity of the parameters in the model were estimated. The data from
patient 9 was closely examined and each parameter was perturbed from its
estimate value by 1 percent. Then the percent change in final tumor volume
was calculated. The parameter sensitivity analysis shown in Figure 5 shows the
system to be most sensitive to λ, the exponent in Eq (4), and to tumor growth
variable a. The growth variable a represents tumor growth rate so it makes sense
that the model will have different predictions based on tumor aggressiveness.
The sensitivity in λ shows small changes in cytolytic effectiveness of tumor
specific T-cells can effect clinical outcome. Then, treatment aggression is key for
successful tumor targeting. Because sensitivity is low for the NK competition
rate, c, then the NK population does not determine tumor size and should be
considered with CD8+ T cell lysis. Before the mathematical model is tested under
different conditions, the effectiveness of the immune system controlling ligand-
transduced cells versus control transduced cells is evaluated. Figure 6 (top right)
shows the effect of ligand-tranduced cells on the immune system response. The
immune system is successful in controlling tumor cell population under these
conditions, even when there is a rechallenge at day 10 with control transduced
cells. Figure 5 (top left) shows that control transduced tumor cells escape the
immune response with further aggression after the day 10 rechallenge. Therefore,
the ligand transduced data is used in the proceeding simulations to create the
best results. Using a computational solution to the mathematical model, three
simulations are performed and solutions observed in Figure 7. The mathematical
system is challenged with three different levels of tumor cells (104, 105, and
106). We reproduce the results of these simulations in Figure 8 using tumor cell
population instead of mean surface area of tumor. Comparing the graphs in
Figure 7 to the corresponding graphs in Figure 8, the same behavior is observed
for the simulation with both CD8+ T-cells and NK cells and the simulation with no
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Figure 3: Comparison of competition term models (power versus rational). Top, CD8+
T-tumor cell lysis. This row of graphs from [2] plots experimental data points (squares and circles)
against mathematical cell lysis predictions (solid lines). The two graphs on the left plot the power
model prediction and rational model prediction against lysis data for control transduced tumor
cells. The two graphs on the right plot the power model prediction and rational model prediction
against lysis data for ligand transduced tumor cells. Bottom, the bar chart on the bottom, plots
the residuals (errors) for the same data sets (CD8+ T-cell lysis of control transduced and ligand
transduced tumor cells). The height of each bar shows the value predicted by the power and rational
models, minus the experimental data values at each effector/target ratio point. The difference
between the power and rational models is most pronounced in the ligand transduced case, where
effector cells are far more efficient at lysing tumor cells.
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Figure 4: Model validation using human data. In each graph (from [2], two separate simu-
lations are plotted along with experimental data from two patients who experienced regression
of melanoma. The model predictions are represented by the smooth curves, the squares represent
patient 9, and the triangles represent patient 10. The top graph shows model predictions using the
power model while the bottom graph shows model predictions using the rational model. Again, the
rational model for predicting CD8+ T-tumor lysis rates provides a better fit to the experimental
data than the power model.
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Figure 5: Sensitivity Analysis. The model predicts that tumor size is the most effected by the
CD8+ T-cell lysis variable, λ, and the growth rate of the tumor, a.

Figure 6: Ligand vs. control transduced in [2]. The top two graphs show the immune system
response to ligand transduced tumor cells and control transduced tumor cells. The top right graph
shows that the immune system is able to control the ligand transduced tumor cells while the top
left shows that the immune system does not contain tumor cell growth of control tranduced cells.
Both are rechallenged with control transduced cells on day 10.
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Figure 7: Simulations of model in [2]. The three graphs show three situations of the model
starting with 104, 105, and 106 tumor cells. The left graph simulates the immune response without
CD8+ T-cells and is only able to control tumor cell population starting at 104. The center graph
shows the immune response without NK cells and can control tumor cell population starting at
104 and 105.The bottom right shows the immune response with both NK and CD8+ T cells and
can control tumor cell population at all starting values of tumor cells.

CD8+ T-cells. However the no NK cell simulation shows dramatic disagreement
between their data and our reproduction of the graph.

Figure 7 (left) and Figure 8 (top) show the tumor growth in response to these
three initial levels of tumor cells in the absence of CD8+ T-cell response. The
system shows immune control for 104 initial tumor cells, but not for 105 or 106

initial tumor cells.
Figure 7 (center) and Figure 8 (center) show immune response to all three

starting values of tumor cells with lack of NK cells instead of lack of CD8+ T-cells.
The two graphs do not show the same result. Figure 7 (center) show depleting
tumor cells starting at a challenge of 104 and 105 cells, but the immune cells
still cannot destroy the tumor cell population when starting with 106 tumor cells.
Figure 8 (center), the graph that we created, shows all three values of tumor cells
uncontrolled by the immune system with lack of NK cells. This discrepancy could
be caused from different starting values of CD8+ T-cells, but this is unlikely since
T-cell values should start close to 0 (they are only recruited when tumor cells are
present). There could also be an assumption in their data or model that we could
not find and therefore did not account for.

Figure 7 (right) and Figure 8 (bottom) show the system with both NK cells
and CD8+ T-cells present. This models a fully functioning immune system. The
immune cells are now able to control tumor cells starting with a challenge of 104,
105, and 106 cells.
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Figure 8: Reproduction of model. The top graph simulates the immune system without CD8+
T-cells and also controls tumor growth for 104, but not 105 or 106. The center graph simulates the
immune system without NK cells, but does not show the same results as Figure 8. In this instance
the absence of NK cells produces an inability to control tumor cells at all three starting points in
the immune system. The bottom graph simulates a fully functional immune system with all values
of tumor cells being controlled.
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4. Further Analysis

The model shown is highly nonlinear so standard analytic techniques are not
plausible. However, analyzing the model with specific cases could give us further
insight. Consider the two cases where (i) the tumor cell population is significantly
larger than the CD8+ T-cell population and (ii) the CD8+ T-cell population is
significantly larger than the tumor cell population.

(i) We assume that the tumor cell population is significantly larger than the
T-cell population, i.e. T >> L. This implies L/T ≈ 0 and so we adopt the
approximation

D =
d
( L

T
)λ

s +
( L

T
)λ

T ≈ d (0)λ

s + (0)λ
T = 0

Therefore, comparatively large amounts of tumor cells to T-cells result in the
T-cell/tumor cell competition term (D) to disappear. This results in an slightly
different system where the equations are:

dT
dt

= aT (1− bT)− cNT (5)

dN
dt

= σ− f N +
gT2

h + T2 N − pNT (6)

dL
dt

= −mL− qLT + rNT (7)

When the solution of the new system is plotted with the same initial challenge
of 104, 105, and 106 tumor cells, the results show that only the 104 tumor cell
challenge is controlled by immune system defenses. This can be seen in Figure
9 as 105 and 106 tumor cell populations are uncontrolled by the solution. This
is expected since there is no T-cell/tumor cell competition term in the tumor
equation and there is no recruitment of T-cells within the T-cell equation. These
factors lead to the tumor cell population growing without check when tumor
cell population starts out efficiently high. Another interesting aspect about this
solution is that Figure 9 is identical to the results of Figure 8 (top), which is the
original model with lack of T-cells. This implies that T-cell effectiveness is based
on the amount of recruitment of cells and the direct impact that the T-cells have
on tumor population. Without the competition term, the T-cells are exactly as
effective as they would be if they were not present in the system.
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Figure 9: Model with no T-cell/tumor competition term. The graph shows the system with
the competition term eradicated. The immune system controls the growth for 104, but the challenge
of 105 and 106 escapes the immune system defenses.

(ii) Now, we assume that the T-cell population is significantly larger than the
tumor population, i.e. L >> T. This implies s

L/T ∼ 0 so we will take D to be

D =
d
( L

T
)λ

s +
( L

T
)λ

T =
d

( s
( L

T )
λ + 1)

T ≈ d T

Large amounts of T-cells compared to tumor cells result in a T-cell/tumor compe-
tition term that is constant. This constant term relies on saturation level of tumor
cell kill by T-cells (d) and by the tumor cell population (T). This new assumption
does not change Eq. 1, Eq. 2, or Eq. 3, but only the D term.

When we solve the new system we use the same challenge of T-cells (104, 105,
and 106) and leave the constant D term with T = 104 and d = d(ln), see Figure 1
for value. Figure 10 shows that a system with constant T-cell/tumor competition
term controls challenges of 104 and 105, but is unable to defend against the 106

challenge. With large amount of T-cells we would expect the immune system
would be able to control tumor population more than with large amounts of
tumor and Figure 10 confirms this intuition.

5. Discussion

Phenomenologically, the data fitting experiments in [2] suggest that the rational
form of the competition term is the most accurate at modeling the interaction of
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Figure 10: Model with constant T-cell/tumor competition term. The graph shows the system
with the competition term constant. The immune system controls the growth for 104 and 105

tumor cells, but the 106 challenge escapes the immune system defenses.

the T-cells and tumor cells. The competition term between NK and tumor cells
show the proportional effects of NK cells to both NK cell population and tumor
cell population. Further research into the underlying biological significance to
why the rational form of the competition term for T-cells fits the tumor cell data
could reveal a immunological significance to T-cell specific treatments. Finding a
mathematical model that fits the empirical data gives insight to how the immune
system responds and tracks ways that could be effective in manually targeting
tumors.

This current model does not account for all the immune system defenses,
but the fact that it fits the empirical data suggests that it can represent immune
response data. The simulations with the model in [2] suggest that the effect
of CD8+ T-cells should be of focus and may be more effective in immunology.
However, the reproduction of the simulations we created show that tumor cell
population grows at any starting supply in the absence of NK cells which implies
that NK cells may be the more effective immune defense cells against tumor cells.
In either case, further studies of NK and T-cell dynamics could supply information
on which immune defense to utilize to fight tumor cells.

Making the assumption that tumor cell population vastly exceeds T-cell popu-
lation, we see the eradication of the T-cell/tumor competition term and two of
the three challenges of tumor grow immensely. The smaller challenge is likely
controlled by the remaining defenses of the NK cells. The results of this assump-
tion also mirrors the system with no T-cells present, therefore showing that the
competition term is necessary for T-cell effectiveness. We also found that if T-cell
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population exceeded tumor population by a great number, that the competition
term would stay at a constant value dependent on tumor population. Now, only
the highest challenge of tumor could not be lysed by the immune system showing
that the constant competition term is the most effective system besides the full
immune system. This is expected because we are assuming the T-cell population
is large. No direct applications to immunotherapy can be found in the results
of the model, however the fact the model fits experimental data shows that this
model can accurately model immune defenses. A study of why this model can
represent the data could lead to significant application to immunotherapy and
give insight into which cells are the most effective at defending the body and
killing cancerous cells.
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