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1 Independence for random variables

Independence. Let X and Y be real-valued random variables. We say X and Y are
independent is the events {a < X < b} and {c < Y < d} are independent for all a, b, c, d.
Intuitively, this means that knowing the value of one of the variables doesn’t affect the
probabilities for the other variable.

Example: Let X be the outcome for a roll of a 6-sided die, and Y be the outcome for a
roll of a 20-sided die. It should be clear that they are independent random variables. The
probability that the first die is 5 and the second die is 18 can be calculated as

P (X = 5 and Y = 18) = P (X = 5) · P (Y = 18) =
1

6
· 1

20
.

Identically distributed. Random variables that have the same probability distribution
function are called identically distributed.

Example: Consider random variables X ={the numerical outcome of a fair, green 6-sided
die} and Y =the numerical outcome of a fair, red 6-sided die}. These two random variables
have the same possible values {1, 2, 3, 4, 5, 6} and the same probabilities for each value; they
are identically distributed.

Example: Consider a coin that is flipped a number of times. The outcome for each coin
flip is identically distributed.

The two above examples are also independent. Random variable that are independent and
identically distributed are called... independent and identically distributed or for short, iid.
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2 Law of large numbers

Let X1, X2, · · · , Xn be independent and identically distributed (iid) random variables with
mean µ. That is, E(Xi) = µ for i = 1, 2, . . . , n. Then

1

n

n∑
i=1

Xi converges in probability to µ as n→∞.

Another way to phrase this is that for all positive numbers ε > 0,

P

(∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ > ε

)
−→ 0 as n→∞.

How to interpret this: Remember that the actual value of 1
n

∑n
i=1Xi is still random, so it

could vary quite a bit if we were to sample different Xi’s. But as the sample size n gets
very large, the chance of the sample average deviating too far from the mean µ is very low.

We have already seen this in class in several cases.

Example: Let’s consider n coin flips with P (H) = p. Let Xi be the outcome of the ith coin
flip, i.e. Xi = 1 if the ith coin flip is heads and Xi = 0 if it is tails. Then the Xi’s are
independent, and they are all Bernoulli random variables with probability of success p. So
they are iid (independent and identically distributed). Thus if we take the average value of
n coin flips: Xn = 1

n

∑n
i=1Xi, as we increase n, this average will get very close to p (which

is the µ in this case). We say that Xn converges to p in probability as n→∞. Recall that
you observed this in one of the R activity assignments.

3 Central limit theorem

Let X1, X2, . . . , Xn be iid with mean µ and variance σ2. Note that we are not assuming
anything about their distribution other than the mean (expected value) and variance. They
could be drawn from a normal distribution, exponential distribution, binomial, Poisson, or
any other distribution that has a finite mean and variance.

Then when the sample size n is large, the sample mean will be approximately normally
distributed with mean µ and variance σ2/n.

Remember that X1, X2, . . . , Xn is a random sample. So for a fixed sample size n, we can
draw a variety of different random samples. Each sample will have a different sample mean
Xn. So by drawing many many different samples, we will have many many different sample
means. If we create a histogram for our dataset of sample means, it will look very much
like the normal distribution with mean µ and variance σ2/n.

This is called the central limit theorem (CLT).

This is a remarkable fact!!!! This is one of the reasons why the normal distribution is so
important to all of statistics.
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If the X1, X2, . . . , Xn are iid and Xi ∼ N(µ, σ2), in other words if they come from a normal
distribution exactly, then Xn is exactly normally distributed.

Summary of CLT:

Xi ∼ N(µ, σ2) for i = 1, 2, . . . , n then Xn ∼ N

(
µ,
σ2

n

)
If the Xi are not normally distributed, this still holds approximately when the sample size
is sufficiently large.

How large should the sample size be so that the central limit theorem is a good approxi-
mation? In most cases n ≥ 30 is a general rule of thumb. Even with smaller sample sizes,
the approximation may not be too bad.

If the underlying distribution of the Xi is extremely skewed with a large probability for
very far away outliers, then n in the 100s, 1000s or larger may be necessary. For example,
if the Xi are exponentially distributed (a distribution that has a higher probability of large
outliers), then a sample size of 100 or greater will be required for a decent approximation
by the CLT.

3.1 Using the CLT to calculated probabilities for Xn

Since we know that Xn ∼ N
(
µ, σ

2

n

)
, we can now calculate the probability of the sample

mean being in a particular range of values. It is now just a normal random variable!

Example: Human height is approximately normally distributed with mean 175 cm and
standard deviation 7 cm. If 30 people are selected at random, approximate the probability
that the mean height of the sample is greater than 182 cm.
Solution: X30 ∼ N(mean = 175, std. dev. = 7/

√
30).

Thus P (X30 ≥ 182) =1-pnorm(182,mean=175,sd=7/sqrt(30))≈ 2(10)−8. This is a mi-
nuscule probability! Note that the cut-off of 182 is only 1 standard deviation above the
mean, so according to the 68-95-99.7 rule, there is a 17% chance of any individual data
point being above 182, but the mean of a sample of 30 data points will rarely be that far
away from 175.

4 Sampling Distributions

In discussing the central limit theorem, we are really talking about sampling distributions.
A sampling distribution is the probability distribution of a sample statistic. A sample
statistic is something that you calculate from a sample. For example the sample mean and
sample variance are both two sample statistics. There are other sample statistics such as
the sample median, sample skewness, and even many others.

Here is a graphical description of the process:
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Figure 1: Gathering many sample means flow chart diagram.

If the Xi are normally distributed with mean µ and variance σ2, then the sample mean is
normally distributed with mean µ and variance σ2

n
as stated by the CLT.

Here we will look at another example of a sampling distribution.

Consider a discrete finite population: {1, 1, 1, 1, 1, 2, 2, 2, 3, 3}. We will sample from this
population with replacement. Let Xi be the ith individual selected. We’ll just select a
sample of size n = 2.

Here are all possible samples of size 2, the probability of each, and the sample mean and
variance for each sample:

X1 X2 P (X1, X2) x s2

1 1.00 1.00 0.25 1.00 0.00
2 2.00 1.00 0.15 1.50 0.50
3 3.00 1.00 0.10 2.00 2.00
4 1.00 2.00 0.15 1.50 0.50
5 2.00 2.00 0.09 2.00 0.00
6 3.00 2.00 0.06 2.50 0.50
7 1.00 3.00 0.10 2.00 2.00
8 2.00 3.00 0.06 2.50 0.50
9 3.00 3.00 0.04 3.00 0.00

Then we look for each possible value of x and add up the probabilities to create a probability
mass function fX(x) for X. This is the sampling distribution for X.

x 1.00 1.50 2.00 2.50 3.00
fX(x) 0.25 0.30 0.29 0.12 0.04
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Similarly we can create a probability mass function fS2(s2) for the sample variance S
2
.

This is the sampling distribution for S2. Note that we are treating the sample variance
S2 as a random variable now, because it’s value depends on the particular sample that is
gathered.

s2 0.00 0.50 2.00
fS2(s2) 0.38 0.42 0.20

Here is an R code that you can use to generate such sampling distributions:

###############################

## EDIT the parameters below

###############################

# list possible x values (population)

# it’s best to keep this between 2 and 5 total values

x=c(1,2,3)

# weights for each x

# (number of tickets in the box)

w=c(5,3,2)

# sample size,

# use n=2 up to 6

# beyond that it may

# take up too much computer memory

n=2

###############################

## DO NOT edit below here (without risk!)

###############################

p=w/sum(w) # turn weights into probabilities

mu=sum(x*p) # population mean

sigsq=sum(x^2*p)-mu^2 # population variance

# now we create the list of all samples of size n,

# calculate sample statistics (mean and varaince of each sample)

S=expand.grid(replicate(n,x,simplify=FALSE))

pr=expand.grid(replicate(n,p,simplify=FALSE))

prob=cbind(0*1:length(S[,1])+1)

# calculate all sample means and their probabilities

xbar=0*prob

for (j in 1:n){

prob=prob*pr[,j]

xbar=xbar+S[,j]

}

# append table with probabilities and sample means

S$prob=prob

S$xbar=xbar/n

# calculate all sample varainces
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var=0*prob

for (j in 1:n){

var=var+(S[,j]-S$xbar)^2

}

# append table with probabilities and sample variances

S$var=var/(n-1)

# construct sampling distributions

# for sample mean and sample variance

xbar_vals=as.numeric(names(table(S$xbar)))

var_vals=as.numeric(names(table(S$var)))

xbar_probs=0*1:length(xbar_vals)

for (k in 1:length(xbar_vals)){

xbar_probs[k]=sum(S$prob[S$xbar==xbar_vals[k]])

}

var_probs=0*1:length(var_vals)

for (k in 1:length(var_vals)){

var_probs[k]=sum(S$prob[S$var==var_vals[k]])

}

# construct sampling distributions

xbar_samp_distr=rbind(xbar_vals, xbar_probs)

var_samp_distr=rbind(var_vals, var_probs)

xbar_mean=sum(xbar_samp_distr[1,]*xbar_samp_distr[2,])

xbar_var=sum(xbar_samp_distr[1,]^2*xbar_samp_distr[2,])-xbar_mean^2

var_mean=sum(var_samp_distr[1,]*var_samp_distr[2,])

var_var=sum(var_samp_distr[1,]^2*var_samp_distr[2,])-var_mean^2

# plot resulting sampling distributions

par(mfrow=c(2,1))

barplot(xbar_samp_distr[2,],

names.arg=as.character(xbar_samp_distr[1,]),

main="sample mean sampling distribution")

barplot(var_samp_distr[2,],

names.arg=as.character(var_samp_distr[1,]),

main="sample variance sampling distribution")

print(xbar_samp_distr)

print(var_samp_distr)
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