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1 Introduction

The situation we find ourselves in is that we have some population or process that we
will collect data from. We will analyze our dataset in order to learn about the underlying
population or process that generated the dataset.

We assume that there is a probability distribution with certain parameters that each data
point comes from independently. We want to estimate the parameters of this underlying
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population probability distribution.

Generally we have a population parameter θ and we use sample data to calculate an estimate
of this parameter. what we calculate form our sample data will be called an estimator, and
is usually denoted with a ‘hat’ over it, θ̂.

This estimator θ̂ is called a point estimate of the parameter θ.

We will mostly be concerned with estimating a population mean and variance. Recall the
sample mean

Xn =
1

n

n∑
i=1

Xi

and the sample variance

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2.

These can be used as point estimates for the population parameters, µ̂ = x and σ̂2 = s2.

Example: Resistance is normally distributed with mean µ and standard deviation σ, we
collect a dataset of 11 resistors and find the sample mean resistance to be x = 8.89 ohms
and sample standard deviation s = 0.38 ohms. We would like to think that the true mean
and standard deviation are close to our sample values: µ ≈ 8.89 and σ ≈ 0.38.

Instead of a point estimate, it may be more desirable to give a range of values where
the population parameter might be. This makes sense given that there will always be
underlying uncertainty and randomness. No point estimate will ever be exact, generally,
or at least we can never be absolutely certain it is exact.

So we construct interval estimates. An interval estimate will generally be of the form

θ̂ ±Q · SE which means (θ̂ −Q · SE, θ̂ +Q · SE)

or sometimes of the form
(θ̂QL, θ̂QU)

where θ̂ is our point estimate as describe above, and Q,QL, QU are quantiles or percentiles
from some probability distribution, and SE is a standard error. the quantileQ and standard
error SE are calculated according to know rules and theorems, such as the central limit
theorem, and the properties that we know about the random variables and probability
functions that we have studied.

We will study confidence intervals for: mean, variance, proportion, and differences between
two means, variances, and proportions.

2 Confidence interval for mean µ

First we discuss how to estimate a population mean, µ.
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2.1 Known variance

Here are two situations:

Under the assumptions that we know σ, and one of the following applies:

• Xi ∼ N(µ, σ2), or

• the data are not normal, but the sample size is large (usually n ≥ 30 is an acceptable
rule of thumb)

then we can use the following formula for a (1− α)100% confidence interval for µ:

Xn ± z1−α
2

σ√
n

where z1−α
2

is the (1 − α
2
)100th-percentile for the standard normal distribution given in R

as
z1−α

2
= qnorm(1-α/2).

This confidence interval is exact when the data are normal and approximate otherwise.
What the term exact means is that the true confidence is exactly 1 − α. When the data
are not normal, then the true confidence may be different than 1 − α. It could be higher
or lower, but generally it is lower.

Another was to understand this is to think about it in terms of sampling distributions. If
the data are normal, then we can exactly calculate probabilities on what the sample mean
will be using the CLT. If the data are not normal, then we can still use the CLT, but the
resulting probabilities about what the sample mean are will be approximate probabilities.

In R:

mean(x)+c(-1,1)*qnorm(1-α/2)*σ/sqrt(length(x))

or

> x = c(x1,x2,...,xn)

xbar = mean(x)

n = length(x)

xbar + c(-1,1) * qnorm(1-α/2) * σ/sqrt(n)

2.2 Unknown variance, large sample

If we do not know the population standard deviation, σ, then we can approximate it by
the sample standard deviation, sn.

If we have a large sample size (n ≥ 30 is an acceptable rule of thumb), then an approximate
(1− α)100% confidence interval for µ is given by:
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Xn ± z1−α
2

sn√
n

where z1−α/2 is the (1− α
2
)100th-percentile for the standard normal distribution.

This does not rely on any assumption about the underlying population distribution, however
if it is badly skewed or has very high probability of outliers, the approximation may be
quite poor. Translation: if you want a 95% confidence interval, but the data has many
outliers, your true confidence may actually be much less than 95%, maybe even as low as
50−70%, or even less. You can think of this as being because we have less control over the
probabilities of the random sample’s mean (the CLT approximation isn’t as good in these
cases for n too small). No matter the properties of the underlying population, though, we
can always choose an n large enough to make this approximation as good as we want. In
the ‘bad’ cases, it just may require a sample size in the thousands or even millions.

We know that the sample mean statistic standardized with the sample variance follows a
Student’s t-distribution with n− 1 degrees of freedom.

Xn − µ
sn√
n

= t ∼ T (n− 1)

We also know that as the sample size gets large, the t-distribution converges to the standard
normal. That is why this approximation works for large sample sizes.

In R:

mean(x)+c(-1,1)*qnorm(1-α/2)*sd(x)/sqrt(length(x))

or

> x = c(x1,x2,...,xn)

xbar = mean(x)

s = sd(x)

n = length(x)

xbar + c(-1,1) * qnorm(1-α/2) * s/sqrt(n)

2.3 Unknown variance, small sample

As stated above, we know that the sample mean statistic standardized with the sample
variance follows a Student’s t-distribution with n− 1 degrees of freedom.

Xn − µ
sn√
n

= t ∼ T (n− 1)

So we can use this to construct a confidence interval:

Xn ± t1−α
2
,n−1

sn√
n

4



where t1−α
2
,n−1 is the (1 − α

2
)100th percentile of the t-distribution with n − 1 degrees of

freedom. In R this is

t1−α
2
,n−1 = qt(1-α/2,df=n-1).

Under the assumption that the data is normal, this is an exact CI. If the data are not
normal, this formula can be used, but just know that the true confidence may be very
much below what is desired. You can somewhat compensate for this by decreasing α, i.e.
trying to construct a 99.9% CI instead of a 95% one in the hope that the true confidence
may still be 95% or above.

In R, if we have a dataset, we can generally construct a confidence interval as follows:

> x = c(x1,x2,...,xn)

xbar = mean(x)

s = sd(x)

n = length(x)

a = α
xbar + c(-1,1) * qt(1-a/2, df =n-1) * s/sqrt(n)

2.4 One-sided confidence bounds

In may cases, we only are interested in an upper or lower bound on the population mean.
In this case, we only need the (1− α)100th percentile instead of the (1− α

2
)100th as in the

two-sided case.

2.4.1 Known variance

Lower bound on µ

Xn − z1−α
σ√
n

Upper bound on µ

Xn + z1−α
σ√
n

2.4.2 Unknown variance, large sample

Lower bound on µ

Xn − z1−α
sn√
n

Upper bound on µ

Xn + z1−α
sn√
n
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2.4.3 Unknown variance, small sample

Lower bound on µ

Xn − t1−α,n−1
sn√
n

Upper bound on µ

Xn + t1−α,n−1
sn√
n

3 Confidence interval for proportion p

A (1− α)100% confidence interval for a binomial proportion p:

p̂± z1−α
2

√
p̂(1− p̂)

n

The requirement is that np̂ > 5 and n(1− p̂) > 5.

Example: A machine produces parts and we wish to estimate the maximum possible true
defective rate with 99.99% confidence. Out of 10,000 parts produced in a day, 120 were
defective.

Note that we are doing an one-sided upper bound CI here. It makes sense that we are only
interested in a one-sided interval here.

n = 10000 and p̂ = 120/10000 = 0.012 so we do satisfy np̂ > 5 and n(1− p̂) > 5.

α = 0.00001 and qnorm(0.9999)=3.719016

So the 99.99% confidence upper bound on the true defective proportion is

0.012 + 3.719016 ·
√

0.012 · 0.988

10000
= 0.01604946

Thus we are 99.99% confident that the machine will produce no more than 1.6% defective
parts.

4 Confidence interval for variance σ2

A (1− α)100% confidence interval for a normal variance σ2:

(
(n− 1)s2

χ2
n−1,1−α/2

,
(n− 1)s2

χ2
n−1,α/2

)
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where χ2
n−1,p is the p(100)% quantile of the χ2 distribution with n− 1 degrees of freedom.

Note that the quantiles might seem like they are ‘switched’ since they are in denominators.

In R: χ2
n−1,p = qchisq(p,df=n-1)

Example: Construct a 95% CI for the variance of a normally distributed population from
a sample of size 25 with sample variance s2 = 10.

α = 0.05 so teh quantile used for the lower bound is qchisq(0.975,df=24)= 39.36408
and the quantile used for the upper bound is qchisq(0.025,df=24)= 12.40115. And the
interval is: (

24 · 10

39.4
,
24 · 10

12.4

)
= (6.1, 19.4)

That seems like quite a wide range of variances!

4.1 CI for standard deviation, σ

To get a CI for standard deviation, we just construct one for varaince and then take the
square roots: (√

(n− 1)s2

χ2
n−1,1−α/2

,

√
(n− 1)s2

χ2
n−1,α/2

)

5 Confidence interval for difference in means µ1 − µ2

5.1 Welch’s two-sample interval (unequal variances)

A (1− α)100% confidence interval for the difference between the means µ1 − µ2:

(x1 − x2)± tν,1−α/2 ·

√
s21
n1

+
s22
n2

where the degrees of freedom are

ν =

(
s21
n1

+
s22
n2

)2
s41

n2
1(n1−1) +

s42
n2
2(n2−1)

Round ν down.

This interval assumes the underlying data are normally distributed. It is still often used
whether or not we know the underlying data distributions, but if we have reason to suspect
the data deviate far from normal, then only use this interval when both sample sizes are
30 or larger.
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5.2 Equal variances

Here we assume that we have two samples Xi and Yi from normal populations with identical
variances.

A (1− α)100% confidence interval for the difference between the means µ1 − µ2:

(x! − x2)± tn1+n2−2,1−α/2 · Sp
√

1

n1

+
1

n2

where Sp is the pooled sample variance:

Sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

Notice that the degrees of freedom for the t-distribution here is n1 + n2 − 2.

If the sample sizes are large (n1 ≥ 30 and n2 ≥ 30), then we can use a standard normal
quantile instead:

(x1 − x2)± z1−α/2 · Sp
√

1

n1

+
1

n2

Again, if the data are not normal, then only use these interval formulas when the sample
sizes are large enough. Even for smaller sample sizes, though, these confidence intervals
can be reasonably accurate for non-normal data as long as there are not too many outliers.

Generally, Welch’s interval will be a better choice for a confidence interval with two samples.

6 Confidence interval for difference in proportions p1−
p2

A (1−α)100% confidence interval for the difference between binomial proportions p1− p2:

(p̂1 − p̂1)± z1−α
2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

The requirement is that n1p̂1 > 5, n1(1− p̂1) > 5, n2p̂2 > 5, and n2(1− p̂2) > 5.

Example: Suppose 310 out of 500 surveyed Democrats support a particular congressional
bill, and 220 out of 400 surveyed Republicans support the bill. Estimate with 95% confi-
dence the true difference in support among Democrats and Republicans.

n1 = 500, p̂1 = 310/500 = 0.62, n2 = 400, p̂1 = 220/400 = 0.55, so we think the difference
is 7%. This is our point estimate of the difference. The interval estimate of the difference
is:
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0.62− 0.55± 1.96 ·
√

(0.62)(0.38)

500
+

(0.55)(0.45)

400
= (0.0053, 0.1347)

So even though we think there is a 7% difference, it may be as little as 0.5% or as high at
13%!

Changing our confidence level to 99% shows that Republicans might even support the bill
at a higher proportion since the interval becomes (−0.015, 0.155).

7 Confidence interval for ratio of variances σ2
1/σ

2
2

A (1− α)100% confidence interval for the rtio of normal variances σ2
1/σ

2
2:

(
s21/s

2
2

F1−α
2
,n1−1,n2−1

,
s21/s

2
2

Fα
2
,n1−1,n2−1

)

where Fp,n1−1,n2−1 is the p(100)th percentile from the F -distribution with n1− 1 numerator
degrees of freedom and n2 − 1 denominator degrees of freedom.

In R: Fp,n1−1,n2−1 = qf(p,n1-1,n2-1).
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