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1 Paired data

We will now look at a dataset where each point has two numerical data values, X and Y ,
that are paired together. For example, consider that we have data on oil wells, including
a depth measurement and the number of barrels produced per year. Each well has two
measurements associated with it, and we would not want to mix the depth of one well
with the production of another. It is clear that each depth data point has an associated
production data point. We may think that production is in some way dependent on the
depth of the well, e.g. maybe older deposits are deeper and more productive (or the
opposite).

A paired dataset:
(X1, Y1), (X2, Y2), . . . , (Xn, Yn).

1.1 Covariance and correlation

With a paired dataset, we can calculate the mean and variance of both X and Y :
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We will now define a few different sums:

Sxx =
∑
i

(xi − x)2

Sxy =
∑
i

(xi − x)(yi − y)

Notice that Sxx = (n− 1)s2x and is always positive. However Sxy can be negative, and this
will occur if x tends to deviate above its mean and y deviates below its mean or vice versa.
Sxy is related to how x and y covary, how the variability of one variable depends on the
other variable.

The covariance of random variables X and Y is formally defined as

Cov(X, Y ) = E
[
(X − E(X))(Y − E(Y ))

]
.

If X and Y are independent, then Cov(X, Y ) = 0.

For paired data, we define the sample covariance as

Cov(X, Y ) =
Sxy
n− 1

In R the sample covariance can be calculated as follows assuming we have our data stored
in x and y:
> cov(x,y)

or

> sum((x-mean(x))*(y-mean(y))

The correlation of random variables X and Y with standard deviations σX and σY is defined
as

Cor(X, Y ) =
Cov(X, Y )

σXσY

The sample correlation is

Cor(X, Y ) =
Cov(X, Y )

sxsy

In R this can be calculated by
> cor(x,y)

or

> cov(x,y)/sd(x)/sd(y)

The correlation will always be between −1 and 1. A correlation of ±1 indicates that there
is no randomness, σ2 = 0 for the random perturbation parameter ε int eh linear regression
equation. The relationship between X and Y is perfectly linear. A correlation of 0 indicates
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that X and Y are independent. The sign of the correlation indicates the sign of the slope
of the line. Note that it is not identical to nthe slope of the line!

See the graph below with correlation coefficient indicated on each graph:

2 Linear regression

We will assume there is a linear relationship between the paired data X and Y . The
assumed linear relationship is

Y = a+ bX.

The slope is b and the y-intercept is a.

This equation is deterministic though int he sense that if you plug in an X value, you will
get a precise y value. We will introduce a term that will cause Y to randomly deviate from
the expected value given by this equation.

Let ε ∼ N(0, σ2) be a normal random variable wtih mean 0 and variance σ2. This will be
the random perturbation away from the linear model. Now we have:

Y = a+ bX + ε.

Furthermore, each Y value may be perturbed differently away from the expected Y =
aX + b:

Yi = a+ bXi + εi.

For a given dataset, our goal now will be to find a and b in order to create a line that “best
fits” the data. See the figure.
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Let ŷi = a + bxi. This is our estimated yi-value for the given xi-value. Our “squared
deviation” from the regression line is (ŷi − yi)

2. We will sum these up to get our summed
square errors

SSE =
∑
i

(ŷi − yi)
2

and divide by n− 2 to get the mean squared error (MSE):

MSE =
SSE

n− 2
.

We perform a minimization procedure to minimize the SSE, and we solve for a and b to
get

b̂ =

∑
i(xi − x)(yi − y)∑

i(xi − x)2
=
Sxy
Sxx

=
Cov(X, Y )

Var(X)

â = y − b̂x

The parameters a and b are unknown, and we use â and b̂ as our estimates of them.

In R we can calculate these as follows:
> b = cov(x,y)/var(x)

a = mean(y)-b*mean(x)

linefit = a+b*x

SSE = sum((y-linefit)∧2)

MSE = SSE/(n-2)

To plot your data in R with the regression line overlayed on it:
> plot(x,y)

lines(x,linefit)
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Alternatively in R we can generate a regression line using the lm() method:
> regline = lm(y x)

SSE = sum((y-regline$fitted.values)∧2)

MSE = SSE/(length(x)-2)

plot(x,y)

abline(regline)

3 Confidence interval for slope

Confidence interval for the slope of the regression line:
> b+c(-1,1)*qt(1-α/2,length(x)-2)*sqrt(MSE/(length(x)-1)/var(x))

b̂± t1−α/2,n−2

√
MSE

(n− 1)Var(X)

4 Confidence interval for particular y-value

Confidence interval for an individual y-value given a particular x-value:
> n=length(x)

> xval=x (input your x-value here)
> a+b*xval+c(-1,1)*qt(1-α/2,n-2)*sqrt(MSE*(1+1/n+(xval-mean(x))∧2/(n-1)/var(x)))

ŷi ± t1−α/2,n−2

√
MSE

(
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n
+

(Xi −X)2

(n− 1)Var(X)

)

5 Confidence interval for particular mean y-value

Confidence interval for mean y-value given a particular x-value: (note that this is the same
as above but without the “1+”
> n=length(x)

> xval=x (input your x-value here)
> a+b*xval+c(-1,1)*qt(1-α/2,n-2)*sqrt(MSE*(1/n+(xval-mean(x))∧2/(n-1)/var(x)))

ŷi ± t1−α/2,n−2

√
MSE

(
1

n
+

(Xi −X)2
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)
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