MATH 321 - SPRING 2019 - EXAM 3 SOLUTIONS

1. (12 pts) A steel cable manufacturer wants to estimate the mean strength of their product for quality control purposes. A sample of 7 sections of cable are pull-tested until failure. The mean force required to cause failure in the sample is found to be $12,500 \mathrm{lbs}$ with a sample standard deviation of 800 lbs . Calculate a 99% lower bound on true mean force required to cause cable failure. Writing the appropriate R code is acceptable. The numbers are not nice here.

Solution:

$12500-\mathrm{qt}(0.99, \mathrm{df}=6) \frac{800}{\sqrt{7}}$
2. (12 pts) An electronics component manufacturer wishes to estimate the mean lifespan of its resistors under a high voltage load. A sample of 400 resistors is tested and the mean time until failure is found to be 137 minutes with standard deviation 40 minutes. Estimate the mean time to failure with a 95% confidence interval. Do not use R code, estimate the interval by hand.

Solution:

The sample is very large, so we can use the CLT normal approximation. Also, ± 1 standard deviations gives a z quantile of about 2 by the 68-95-99.7 rule.
$137 \pm \operatorname{qnorm}(0.975) \frac{40}{\sqrt{7400}} \approx 137 \pm 2 \cdot \frac{40}{20}=137 \pm 4=(133,141)$
3. (12 pts) A political polling company surveys two regions regarding support for a particular ballot proposition. Out of 300 respondents in region A, 210 of them will vote 'yes.' Out of 300 respondents in region B, 150 state they will vote 'yes'. Conduct a statistical hypothesis test at significance level $\alpha=0.05$ about whether or not there truly is a difference in the support for the ballot proposition between the two regions. Calculate and simplify everything by hand. The numbers are nice if you use the pooled proportion.

Solution:

H_{0} : the proportions are equivalent, $p_{1}=p_{2}$
$H_{a}: p_{1} \neq p_{2} \quad$ (a 1-sided test would also be acceptable)
The pooled proportion is $\hat{p}=\frac{210+150}{300+300}=0.6$
The test statistic is

$$
z=\frac{0.7-0.5}{\sqrt{\frac{6}{10} \frac{4}{10} \frac{2}{300}}}=\frac{0.2}{\frac{4.4}{100^{2}}}=\frac{0.2}{4 / 100}=0.2 \cdot \frac{100}{4}=5
$$

This is a very large z value, well beyond the 2 standard deviations associated with the 5% level for a 2 -sided test. Thus we reject H_{0}. This conclusion holds regardless of 1 - vs 2 - sided.
4. A scientist at a water treatment plant takes 9 samples to test for a particular contaminant. The current regulatory agency allowed level is 5 parts per million (ppm) for this particular contaminant. The mean contaminant level is found to be $\bar{X}=5.4 \mathrm{ppm}$ with a sample standard deviation of 0.1 ppm . A statistical hypothesis test is to be conducted with significance level $\alpha=0.05$.
(a) (6 pts) Write down null and alternative hypotheses.

$$
\text { Solution: } H_{0}: \mu=5, H_{a}: \mu>5
$$

(b) (6 pts$)$ Calculate the needed test statistic. Simplify exactly by hand.

Solution: $t=(5.4-5) /(0.1 / \sqrt{9})=12$
(c) (6 pts) Calculate the p-value. You may write R code here.

Solution: $p=1-\mathrm{pt}(12,8)$
(d) (6 pts) State your conclusion. Is there strong evidence that the water is or is not within regulatory guidelines? Even if you do not know the p-value exactly, use your knowledge to draw a definite conclusion.

Solution:

Our test statistic t is very large, that it will give a very small p-value, thus we will likely reject the null hypothesis with strong evidence.
5. (9 pts) Calculate the p-value for the following hypothesis tests for the mean of a normally distributed population and unknown variance. Answering in terms of R code is acceptable.
(a) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu \neq \mu_{0}$
and test statistic $t=1.76$ and sample size $n=20$.
Solution: This is 2 -sided, so either $2 * \mathrm{pt}(-1.76,19)$ or $2 *(1-\mathrm{pt}(1.76,19))$
(b) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu>\mu_{0}$
and test statistic $t=1.87$ and sample size $n=45$.

Solution:

either pt $(-1.87,44)$ or $1-\mathrm{pt}(1.87,44)$ are fine
or since we have a large sample size, we can use normal:
pnorm (-1.87) or 1-pnorm(1.87)
(c) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu<\mu_{0}$
and test statistic $t=-2.15$ and sample size $n=12$.

Solution:

either $\mathrm{pt}(-2.15,11)$ or $1-\mathrm{pt}(2.15,11)$ are fine
6. (9 pts$)$ Calculate the p-value for the following hypothesis tests for the mean of a normally distributed population and known variance. Answering in terms of R code is acceptable.
(a) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu \neq \mu_{0}$
and test statistic $z=2.76$.
Solution: $2 * \operatorname{pnorm}(-2.76)$ or $2 *(1-$ pnorm (2.76))
(b) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu>\mu_{0}$
and test statistic $z=1.79$.
Solution: pnorm(-1.79) or 1-pnorm(1.79)
(c) $H_{0}: \mu=\mu_{0}$
$H_{a}: \mu<\mu_{0}$
and test statistic $z=-1.15$.
Solution: pnorm(-1.15) or 1-pnorm(1.15)
7. (10 pts) Consider the dataset below. Calculate by hand: the least squares regression line, the correlation coefficient, and sum of squared errors. Hint: the numbers are nice!

x	10	12	20	30	36
y	2050	2060	2100	2150	2180

Solution:

Data is exactly linear. $y=2000+5 x$ so $R=1$ and $S S E=0$.
The other exam version had: Data is exactly linear. $y=1000+2 x$ so $R=1$ and $S S E=0$.
8. (12 pts) Match the correlation coefficient to the graph.
$R=-0.99, \quad R=-0.06, \quad R=0.86, \quad R=0.54, \quad R=0.97, \quad R=-0.85$,

Solution:

In order:
$R=-0.85,-0.063,-0.99$
$R=0.54,0.97,0.86$

