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Abstract. Let R be a commutative ring, (f) an ideal of R, and E = K(f ;R) the Koszul complex.
We investigate the structure of the Tate construction T associated with E. In particular, we study
the relationship between the homology of T , the quasi-complete intersection property of ideals, and
the complete intersection property of (local) rings.

Introduction

Let (R,m) be a commutative, Noetherian, local ring with maximal ideal m and let I be a proper,
non-zero ideal of R. Fix a generating set f of I, and let E be the Koszul complex on f .

Recall that I is a complete intersection ideal if it can be generated by a regular sequence. As R
is local, this condition is tantamount to the following (equivalent) conditions:

(1) Hi(E) = 0 for all i > 0.
(2) H1(E) = 0.

Let S denote R/I. There is a canonical homomorphism of graded S-algebras:

λS∗ : ∧S∗H1(E) → H∗(E),

cls(z1) ∧ · · · ∧ cls(zm) 7→ cls(z1 ∧ · · · ∧ zm).

The focus of this paper is on quasi-complete intersection ideals.

Definition. The ideal I is a said to be a quasi-complete intersection if H1(E) is free as an S-module
and λS∗ is an isomorphism.

As Avramov, Henriques, and Şega [5] note, these ideals were first introduced in Rodicio’s paper
[18] and in his joint work with Blanco and Majadas [9] as ideals having free exterior Koszul homology.
The quasi-complete intersection nomenclature is due to Avramov et al. [5, 1.1].

Like complete intersection ideas, quasi-complete intersections can be described from an ideal-
theoretic perspective: An ideal generated by a sequence of exact elements is necessarily a quasi-
complete intersection; see [5, Theorem 3.7] and [15, Theorem 1.8]. The converse does not hold: In
[16, Example 4.1], Kustin, Şega, and Vraciu give an example of a quasi-complete intersection which
cannot be generated by a sequence of exact elements.

We study homological characterizations of quasi-complete intersections. Our primary tool in this
study is the Tate construction. This complex is the second step in a Tate resolution of S over R,
i.e, it is the result of adjoining (to the Koszul complex E) variables of degree two to annihilate the
degree one homology of E; see [20, §2]. In Section 1 we recall the properties of the Tate construction
and the related Cartan construction.

Blanco, Majadas and Rodicio [10, Theorem 1] provide a characterization of quasi-complete in-
tersection ideals as follows. Let z denote a set set of cycles whose homology classes generate H1(E)
and let T be the Tate construction on f and z. Then Hi(T ) = 0 for all i > 0 if and only if I is
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a quasi-complete intersection and z represents a basis for the S-module H1(E). In Section 2 we
strengthen one direction of this characterization with the following result (Theorem 2.1):

Theorem A. Suppose f = {f1, . . . , fn} and set b = n − depth(I,R). If Hi(T ) = 0 for i =
2, . . . , b + 2, then I is a quasi-complete intersection and z represents a basis for the S-module
H1(E).

In Section 3 we provide another characterization of quasi-complete intersection ideals (Theo-
rem 3.1). We detect the quasi-complete intersection property from a band of vanishing of width
b+ 1 (as in Theorem A) and with an additional assumption on the size of z we have flexibility in
the location of the band.

In Section 4 we utilize the fact (established by Assmus [1, Theorem 2.7]) that the maximal ideal
of a local ring is a quasi-complete intersection if and only if the ring is a complete intersection. We
obtain the following characterization of (local) complete intersection rings (Theorem 4.4):

Theorem B. Let x be a minimal generating set of m, and set b = embdimR− depthR. Suppose
z = {z1, . . . , zb} is a set of cycles whose homology classes form a minimal generating set of H1(E).
Let T be the Tate construction on x and z. The following conditions are equivalent:

(1) R is a complete intersection.
(2) There exists an integer q ≥ 2 such that Hi(T ) = 0 for i ∈ {q, . . . , q + b− 1}.

In particular, the quasi-complete intersection property of m (equivalently: the complete inter-
section property of R) can be detected from a band of vanishing of H∗(T ) of width b (compared to
width b+ 1 of Theorems A and B).

Assmus [1, Theorem 2.7] also characterizes complete intersections as rings for which H2(T ) = 0.
Utilizing results of Halperin [13, Theorem B], Gulliksen [12, Theorem 3.5.1], and Avramov [3,
Theorem 2.3], we expand on this characterization with the following result (Theorems 4.7 and 5.5):

Theorem C. Suppose that one of the following conditions holds:

(1) Hi(T ) = 0 for i = 3 or 4.
(2) Hi(T ) = 0 for some i ≥ 5 and there is a Golod homomorphism from a complete intersection

ring onto R̂.

Then R is a complete intersection.

1. The Tate Construction

Throughout this paper, R is a commutative (not necessarily Noetherian) ring. We recall the
construction of two families of complexes, due respectively to Tate [20] and Cartan. We adopt
the notation of [12, 20]. In particular, if X is a differential graded (DG) R-algebra and v is a
homogeneous cycle of X, then X〈V | ∂V = v〉 denotes the extension of X obtained by adjoining
a variable V to annihilate the cycle v. The type of variable depends on the degree of v: If |v|
is odd then V is an exterior variable, and if |v| is even then V is a divided powers variable; see
[4, Construction 6.1].

Let I denote a proper non-zero ideal of R, and S = R/I. We fix a generating set f of I. Let E
denote the Koszul complex on f , i.e., E = K(f ;R). We have an identification of E as an extension
of R. Let u = {uf : f ∈ f} denote a set of degree one exterior variables. Then

E = R〈u | ∂uf = f〉.
Construction 1.1. The Tate construction. Let z be a set of cycles of degree one such that the
homology classes {cls(z) : z ∈ z} generate H1(E). Let w = {wz : z ∈ z} denote a set of degree
two divided powers variables. The Tate construction on f and z, denoted T (f ; z) is

T (f ; z) =R〈u,w | ∂uf = f, ∂wz = z〉
=E〈w | ∂wz = z〉.
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Let T denote the Tate construction T (f ; z); we have the equality H1(T ) = 0 and isomorphisms
H0(T ) ∼= H0(E) ∼= S.

The Tate construction T has the following explicit presentation. Let W be a graded R-module
on the basis w, and let ΓR∗W denote the divided powers algebra on W . For integers j(w) ≥ 0

with p =
∑

w∈w j(w), the distinct expressions
∏
w∈w w

(j(w)) form a basis of ΓRpW . This yields the
following presentation of the complex:

Tn =
⊕

2p+q=n

Eq ⊗R ΓRpW,

∂Tn

(
e⊗

∏
w∈w

w(j(w))

)
= ∂E(e)⊗

∏
w∈w

w(j(w))

+(−1)|e|
∑
w′∈w

z′e⊗ w′(j(w′)−1)
∏
w 6=w′

w(j(w))

 .

Remark 1.2. For a local ring (R,m), we have a uniqueness property of the Tate construction. Let
f denote a minimal generating set of I, and let E denote the Koszul complex on f . If z is set of
degree one cycles whose homology classes form a minimal generating set of H1(E), then T (f ; z)
is unique up to isomorphism (see, for example [6, 1.2]). As such, we may (in this context) simply
refer to the Tate construction on I without risk of confusion.

Remark 1.3. The explicit presentation of the Tate construction T = T (f ; z) yields a convergent
first-quadrant spectral sequence:{

dp,qr : Erp,q → Erp−r,q+r−1

}
r≥0

; Erpq =⇒ Hp+q(T ).

The E0 and E1 pages are as follows:

E0
pq = Eq−p ⊗R ΓRpW, E1

pq = Hq−p(E)⊗S ΓSp (S ⊗RW ).

Let Hi denote Hi(E) and let Γj denote ΓSj (S ⊗RW ). For q ≥ 0, the row E1
∗q of the E1 page of the

spectral sequence is as follows:

0 Hq Hq−1 ⊗S Γ1 · · · H2 ⊗S Γq−2 H1 ⊗S Γq−1 Γq 0

This spectral sequence will be utilized in Section 2; the realization of the Tate construction as an
extension of R will appear in Sections 3 through 5.

We now recall the prototype for the Tate construction: the Cartan construction.

Construction 1.4. The Cartan construction. Let B denote a DG R-algebra with differential ∂B = 0.
Let y denote a set of generators of B1, and let w = {wy : y ∈ y} denote a set of degree two divided
powers variables. The Cartan construction C on B is the extension

C = B〈w | ∂wy = y〉.

Remark 1.5. Let C be the Cartan construction on B. Then C is bigraded:

Cp,q = Bq−p ⊗R ΓRpW, Cn =
⊕
p+q=n

Cp,q.

Moreover C decomposes into strands C∗,q:

0 Bq Bq−1 ⊗R ΓR1 W · · · B1 ⊗R ΓRq−1W ΓRq W 0.
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As such, we have a decomposition of the homology of C:

(1.6) Hn(C) =
⊕
p+q=n

Hp(C∗,q).

Remark 1.7. Let G be a free R-module on a basis g. Set B = ∧R∗ G, and consider B as a DG
algebra with differential ∂B = 0; note that H(B) = B. Let C be the Cartan construction on B.
Then Hp(C∗,q) = 0 for all (p, q) 6= (0, 0).

Indeed, g is regular on B (in the sense of [4, §6]) so that [4, Proposition 6.1.7] yields an isomor-
phism

B

(g)B
∼= H(C).

In light of this and the equalities (g)B = B≥1 and B0 = R we have Hn(C) = 0 for n > 0 and
H0(C) = R. Now (1.6) yields desired result.

2. Low-degree vanishing of H∗(T )

Recall that E is the Koszul complex on a fixed generating set f of I. Throughout this section, z
denotes a set of degree one cycles such that the homology classes {cls(z) : z ∈ z} generate H1(E).
Let T denote the Tate construction on f and z given by Construction 1.1. In this section, we prove
the following result (Theorem A):

Theorem 2.1. Suppose that I = (f) is a proper, non-zero ideal of R, and set b = max{i :
Hi(E) 6= 0}. Suppose z is a set of cycles whose homology classes generate H1(E). Let T be the
Tate construction on f and z. The following conditions are equivalent:

(1) I is a quasi-complete intersection ideal and z represents a basis of the S-module H1(E).
(2) Hi(T ) = 0 for all i > 0.
(3) Hi(T ) = 0 for i = 2, . . . , b+ 2.

Remark 2.2. When R is Noetherian, the integer b can be computed as follows: For I = (f1, . . . , fc)
and I 6= I2, [17, Theorem 16.8] yields that b = c − depth(I,R), where depth(I,R) denotes the
length of a maximal R-sequence contained in I.

We begin by noting a relationship between the properties of the map λS∗ and the homology of

T . The map d1,1
1 of the spectral sequence of Remark 1.3 is given by

d1,1
1 : S ⊗RW → H1(E), s⊗R wi 7→ s cls(zi).

The construction of T yields that d1,1
1 is surjective, S⊗RW free over S, and H1(T ) = 0. In addition,

λS1 : ∧S1H1(E)→ H1(E) is the identity map.

Proposition 2.3. Let k ≥ 1 be an integer. The following statements are equivalent:

(1) Hi(T ) = 0 for i = 2, . . . , k + 1

(2) d1,1
1 is an isomorphism, λSi is an isomorphism for i = 2, . . . , k, and λSk+1 is surjective.

Proof. (1) =⇒ (2): We first establish that d1,1
1 : S ⊗R W → H1(E) is injective (and is thus

an isomorphism of S-modules). Recall that the terms E0
p,q are non-zero only for (p, q) satisfying

q ≥ p ≥ 0. Thus E0
2,1 = 0, and so E2

1,1 = Ker d1,1
1 . Moreover, E2

1,1 = E∞1,1 is (isomorphic to) a

subquotient of H2(T ), so that d1,1
1 is injective, as desired.

We now focus on the properties of the maps λi described in (2). In addition, we show that the
following condition holds:

(3) E2
0,k+1 = 0 and E2

p,q = 0 for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p+ k − 1.
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We will establish (2) and (3) by induction on k.
Suppose k = 1. We begin with (3) and show that E2

q,q = 0 for all q ≥ 1. Let C be the Cartan
construction on the free S-module H1(E) and let Dn denote the strand C∗,n (see Construction 1.4).
Let Γi denote ΓSi (W ⊗R S). For each q ≥ 1, we have morphisms relating the row E1

∗q of the E1

page of the spectral sequence to the strand Dq:

(2.4)

E1
∗q : · · · H2(E)⊗S Γq−2 H1(E)⊗S Γq−1 Γq 0

Dq : · · · ∧S2H1(E)⊗S Γq−2 H1(E)⊗S Γq−1 Γq 0

λS2 ⊗ Γq−2 λS1 ⊗ Γq−1= =

From this diagram we conclude that E2
q,q = Hq(D

q). But Remark 1.7 yields that Hq(D
q) = 0 for

all q ≥ 1, and so E2
q,q = 0 for all q ≥ 1, as desired. It remains to show that E2

0,2 = 0. We have

E2
0,2 = E∞0,2; this is (isomorphic to) a subquotient of H2(T ), so that E2

0,2 = 0.

For (2) note that λS1 is the identity map on H1(E); we now show that λS2 is surjective. Note that

E1
−1,2 = 0, and so E2

0,2 = Coker d1,2
1 . But E2

0,2 = 0, and so d1,2
1 is surjective. We have the following

commutative diagram with exact rows:

E1
∗,2 : 0 H2(E) H1(E)⊗S Γ1

D2
∗ : 0 ∧S2H1(E) ∧S1H1(E)⊗S Γ1

d1,21

λS2 λS1 ⊗ Γ1
∼=

Thus λS2 is surjective, as desired.
Suppose now that k ≥ 2. By construction and by induction E2

1,k = E∞1,k; this is (isomorphic to) a

subquotient of Hk+1(T ), and so E2
1,k = 0. Similarly, E2

0,k = 0. These equalities yield the following
commutative diagram with exact rows:

(2.5)

E1
∗k : 0 Hk(E) Hk−1(E)⊗S Γ1 Hk−2(E)⊗S Γ2

Dk : 0 ∧SkH1(E) ∧Sk−1H1(E)⊗S Γ1 ∧Sk−2H1(E)⊗S Γk−2

λSk λSk−1 ⊗ Γ1∼= λSk−2 ⊗ Γ2∼=

An application of the four lemma now gives that λSk is an isomorphism.
To establish (3) it remains to show that E2

pq = 0 for all (p, q) = (q − k + 1, q), where q ≥ k + 1.
For each such q, we have the following commutative diagram:

(2.6)

E1
∗q : Hk(E)⊗S Γq−k Hk−1(E)⊗S Γq−k+1 Hk−2(E)⊗ Γq−k+2

Dq : ∧SkH1(E)⊗S Γq−k ∧Sk−1H1(E)⊗S Γq−k+1 ∧Sk−2H1(E)⊗ Γq−k+2

λSk ⊗ Γq−k
∼= λSk−1 ⊗ Γq−k+1∼= λSk−2 ⊗ Γq−k+2∼=

Hence we have an isomorphism E2
q−k+1,q

∼= Hq−k+1(Dq). Noting that q− k+ 1 ≥ 2, Remark 1.7

yields Hq−k+1(Dq) = 0, and so E2
q−k+1,q = 0 for each q ≥ k + 1.
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For (2), it remains to show that λSk+1 is surjective. As E1
−1,k+1 = 0, we have Coker d1,k+1

1 =

E2
0,k+1. But E2

0,k+1 = E∞0,k+1; this is (isomorphic to) a subquotient of Hk+1(T ), so that E2
0,k+1 = 0.

This in turn yields that d1,k+1
1 is surjective. From this, we have the following commutative diagram

with exact rows:

(2.7)

E1
∗,k+1 : 0 Hk+1(E) Hk(E)⊗S Γ1

Dk+1
∗ : 0 ∧Sk+1H1(E) ∧SkH1(E)⊗S Γ1

d1,k+1
1

λSk+1 λSk ⊗ Γ1∼=

From this, we conclude that λSk+1 is surjective.
(2) =⇒ (1): As above, let C denote the Cartan construction on the free S-module H1(E).

First, we have that E2
p,q = 0 for (p, q) = (0, k) and for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p+ k− 1.

Indeed, by utilizing commutative diagrams analogous to (2.4), (2.5), and (2.6), we have that E2
p,q

is isomorphic to Hp(D
q) for (p, q) = (0, k) and for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p + k − 1.

Consequently, Remark 1.7 yields that E2
p,q = 0 for all such (p, q). Second, noting that λSk+1 is

surjective, we see from a diagram analogous to (2.7) that E2
0,k+1 = 0 as well.

In particular, this vanishing of E2 in this region yields that E∞p,q = E2
p,q = 0 for all (p, q) satisfying

0 < p+ q ≤ k + 1. For each such (p, q) we have a finite filtration

(2.8) 0 = F−1Hp+q ⊆ F0Hp+q ⊆ · · · ⊆ Fp+qHp+q = Hp+q(T ).

Each quotient of consecutive terms has the form

FpHp+q

Fp−1Hp+q

∼= E∞p,q = 0.

We therefore conclude that each containment in (2.8) is an equality, and hence Hp+q(T ) = 0 for all
0 < p+ q ≤ k + 1, so that Hi(T ) = 0 for all i = 2, . . . , k + 1. �

With Proposition 2.3 in hand, we are now prepared to prove Theorem 2.1. Note that the result
of Blanco, Majadas, and Rodicio ([10, Theorem 1]) establishes the equivalence (1) ⇐⇒ (2).

Proof of Theorem 2.1. (1) =⇒ (2) was established by Tate [20], and (2) =⇒ (3) is clear.

(3) =⇒ (1): By Proposition 2.3, H1(E) is free as an S-module via d1,1
1 : S ⊗R W → H1(E),

so that H1(E) has the desired basis. Moreover, λSi is an isomorphism for i = 1, 2, . . . , b + 1. As
Hb+1(E) = 0, we have that ∧Sb+1H1(E) = 0, and so rankS H1(E) ≤ b. Then for each i > b + 1 we

have the equality ∧Si H1(E) = 0 and λSi is an isomorphism (of zero modules). �

A result of Kustin, Şega, and Vraciu ([16, Lemma 1.7]) provides (in the local case) an analogous
classification for two-generated quasi-complete intersection ideals in terms of the vanishing of the
homology of the Tate construction and a double annihilator condition.

The following construction provides the framework for the double annihilator condition.

Construction 2.9 ([16, 1.4]). Fix a basis v1, . . . , vn of E1 with ∂E(vi) = fi. Suppose that z =
{z1, . . . , zn} is a set of degree one cycles of E such that the homology classes {cls(zi)} minimally
generate H1(E). Then there exist {aij : i, j ∈ [1, n]} ⊂ R such that

zi =
n∑
j=1

aijvj .
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Let A denote the matrix (aij) and set ∆ = detA. Then the map λSn : ∧SnH1(E)→ Hn(E) is given
by

cls(z1) ∧ · · · ∧ cls(zn) 7→ ∆v1 · · · vn.
The equality νR(H1(E)) = n holds whenever I is a quasi-complete intersection with depth(I,R) =

0; see [5, 1.2].

Lemma 2.10 ([16, Lemma 1.7]). Suppose νR(I) = 2 and depth(I,R) = 0. Then the following
statements are equivalent:

(1) I is a quasi-complete intersection.
(2) H2(T ) = 0, (0 :R I) = (∆), and (0 :R ∆) = I, where ∆ is as defined in Construction 2.9.

Remark 2.11. Suppose I = (f) is principal and there exists g ∈ R with (0 :R f) = (g). If
H2(T (f ; g)) = 0, then I is a quasi-complete intersection. Indeed, the Tate construction T (f ; g) has
the following form:

0 R R R · · ·
·f ·g ·f

The hypothesis that H2(T (f ; g)) = 0 yields that (0 :R f) = (g), and consequently Hi(T (f ; g)) = 0
for all i > 0 and I is a quasi-complete intersection.1

The following result illustrates another case in which the vanishing of H2(T ) is sufficient to detect
the quasi-complete intersection property of I.

Proposition 2.12. Suppose I = (f) and
⋂
i≥1(f i) = (0). If H2(T ) = 0, then I is a quasi-complete

intersection.

Proof. Let E denote the Koszul complex K(f ;R). Suppose z is a set of non-zero elements of R
such that (z) = annR(f) = H1(E). Let T denote the Tate construction T (f ; z) = E〈w | ∂wz = z〉.
In this context the differentials ∂T2 : W → R and ∂T3 : W → W are defined on basis elements by
∂T2 (wz) = z and ∂T3 (wz) = fwz.

It will suffice to show that z = {z}. Suppose not, and pick distinct generators z, z′ in z. We
will show by induction that z, z′ ∈ (f i) for all i ≥ 1.

Note that Z2(T ) contains the non-zero cycle ζ = z′wz − zwz′ . As H2(T ) = 0 we have that ζ is a
boundary. Thus z′ = r′f and z = rf for r, r′ ∈ R, so that z, z′ ∈ (f).

Suppose now that z, z′ ∈ (f i) for some i ≥ 1. Then there exists s, s′ ∈ R with z = sf i and
z′ = s′f i. Then Z2(T ) contains the non-zero cycle swz′ − s′wz, so that there exists t, t′ ∈ R with
s = tf and s′ = t′f . Thus z = tff i and z′ = t′ff i, so that z, z′ ∈ (f i+1), completing the induction.

Therefore z = 0 = z′, a contradiction.
�

3. Vanishing of homology of DG algebras

In Theorem 2.1, we see a situation in which a band of vanishing of H∗(T ) implies that Hi(T ) = 0
for all i > 0. In this section we prove the following result, which continues this theme.

Theorem 3.1. Set b = max{i : Hi(E) 6= 0}, and suppose z = {z1, . . . , zb} is a set of cycles whose
homology classes generate H1(E). Let T be the Tate construction on f and z. If there exists an
integer q ≥ 2 with Hi(T ) = 0 for i ∈ {q, . . . , q + b}, then I is a quasi-complete intersection.

The hypothesis that H1(E) can be generated by b elements means that the size of H1(E) is
compatible with I being a quasi-complete intersection in the following sense:

Remark 3.2. If I is a quasi-complete intersection ideal, then rankS H1(E) = b. Indeed, the isomor-
phism λS∗ yields the equality b = max{i : ∧Si H1(E) 6= 0}.
1In this context, the pair (f, g) is an exact pair in the sense of Kie lpiński, Simson, and Tyc [15, Definition 1.1].
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We now develop conditions, expressed as a band of vanishing of homology, under which an
extension formed by the adjunction of variables of degree two exhibits eventually periodic or even-
tually vanishing homology. We adopt the notation of [4, §6]. For integers i ≤ j, let [i, j] denote
{i, i+ 1, . . . , j}.

Lemma 3.3. Let A denote a DG R-algebra. Suppose that {z1, . . . , zm} is a set degree one cycles
of A. Put A0 = A and for 1 ≤ j ≤ m put Aj = Aj−1〈wj | ∂wj = zj〉. Let q and b be integers.

(1) Suppose Hi(Am) = 0 for all i ∈ [q, q + m]. Then for each j we have Hi(Aj) = 0 for all
i ∈ [q +m− j, q +m].

Suppose further that Hi(A) = 0 for all i > b.

(2) Hi(A1) ∼= Hi+2(A1) for all i ≥ b, i.e., H∗(A1) is periodic of period 2 beginning in degree b.
(3) If q ≥ b+1−m and Hi(Am) = 0 for all i ∈ [q, q+m], then Hi(Am) = 0 for all i ≥ b+1−m.

Proof. For (1), by induction we may assume m = 1. Then Hi(A1) = 0 for i ∈ {q, q + 1}. The
equality Hq+1(A) = 0 now follows from immediately from the following portion of long exact
sequence in homology associated with Tate’s exact homology triangle [4, Remark 6.1.6]:

(3.4)

· · · Hq+1(A1)

Hq+2(A) Hq+2(A1) Hq(A1)

Hq+1(A) Hq+1(A1) · · ·

The result of (2) also follows from [4, Remark 6.1.6]: For each i ≥ b we have an isomorphism
Hi+2(A1) ∼= Hi(A1), so that H∗(A1) is eventually periodic of period 2. The extremal case occurs
when i = b, namely Hb+2(A1) ∼= Hb(A1), so that the periodicity begins in the desired position.

For (3), we proceed by induction on m. Consider the case m = 1. By (2), the vanishing of
Hi(A) for i > b yields that H∗(A1) is periodic of period 2 beginning in degree b. By hypothesis,
Hi(A1) = 0 for i ∈ {q, q + 1}. As q ≥ b, we have that one representative from each of the two
isomorphism classes of H≥b(A1) vanishes, so that Hi(A1) = 0 for all i ≥ b.

Suppose now that for each 1 ≤ a < m the statement holds for the adjunction of a variables of
degree two, and that Hi(Am) = 0 for all i ∈ [q, q+m]. By (1), Hi(Am−1) = 0 for all i ∈ [q+1, q+m].
By induction, we have that Hi(Am−1) = 0 for all i ≥ b+1−(m−1), so that (2) yields that H∗(Am)
is periodic of period 2 starting in degree b + 1 − m. As q ≥ b + 1 − m, we have that (at least)
one representative from each of the two isomorphism classes of H≥b+1−m(Am) vanishes, which
completes the proof. �

Remark 3.5. The vanishing guaranteed by Lemma 3.3 begins at a position independent of the
location of the band of vanishing. In particular, this yields the following: If Hi(B) = 0 for all
i� 0, then Hi(B) = 0 for all i ≥ b+ 1−m.

Remark 3.6. In the more general case where the extension B is formed by the adjunction of variables
in a single arbitrary even degree or differing even degrees, one can obtain a description of a region
of vanishing which implies the eventual vanishing of the homology of such an extension.

Proof of Theorem 3.1. Note that T = E〈w1, . . . , wb | ∂wi = zi〉, where |zi| = 1. Lemma 3.3 (3) now
yields that Hi(T ) for all i ≥ 1. Thus T is acyclic, and I is a quasi-complete intersection. �

4. Characterizing complete intersections

In this section, (R,m, k) is a (Noetherian) local ring.
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Definition 4.1. We say that R is a complete intersection if its m-adic completion R̂ can be written
as a quotient of a (complete) regular local ring by a regular sequence.

A result of Assmus [1, Theorem 2.7] yields that R is a complete intersection if and only if m
is a quasi-complete intersection ideal. Assmus’ result does not use the quasi-complete intersection
terminology: The condition is stated as “H(E) is the exterior algebra on H1(E)”. As Avramov,
Henriques, and Şega [5, §1] note, the existence of some isomorphism of graded S-algebras

λ : H(E)
∼=−→ ∧S∗H1(E)

guarantees the quasi-complete intersection property.
Let T denote Tate construction on m; see Remark 1.2. In this section, we study complete

intersection rings by applying the results of Sections 2 and 3. We show that, compared to the non-
maximal case, the quasi-complete intersection property of m (and hence the complete intersection
property of R) can be detected from a smaller band of vanishing of H∗(T ). Hereafter, the size of a
minimal generating set of an R-module M is denoted νR(M).

We begin by outlining a construction which will allow us to relate a Tate construction over local
ring to a Tate construction over a quotient.

Construction 4.2. The Tate construction on R. Assume that R is complete. There exits a regular
local ring (Q, n, k) and an ideal J ⊂ n2 such that R = Q/J . Furthermore, b = νQ(J); see, for
example, [1, pp 196-197]. Select a maximal Q-sequence a1, . . . , ah in J so that the images {ai} in
J/nJ are linearly independent over Q/n; we may extend the sequence to a minimal generating set
a1, . . . , ab of J . Put J ′ = (a1, . . . , ah) and let (Q′, n′) denote (Q/J ′, n/J ′).

Let K denote the Koszul complex on a minimal generating set of n and let E′ denote the Koszul
complex on a minimal generating set of n′. As before, h = νQ′(H1(E′)). Let z′ = z′1, . . . , z

′
h denote

the set of cycles given by the construction in [1, pp 196-197]; their homology classes form a minimal
generating set for H1(E′). Moreover, letting z1, . . . zh denote their images in E = E′ ⊗Q′ R, the
same construction yields that these images extend to a set of cycles z = z1, . . . , zb whose homology
classes form a minimal generating set of H1(E).

Let F ′ denote the Tate construction on E′ and z′, so that F ′ = E′〈w1, . . . , wh | ∂wi = z′i〉. Set
F = F ′⊗Q′R = E〈w1, . . . , wh | ∂wi = zi〉. By construction, Q′ is a complete intersection; a result of

Assmus ([1, Theorem 2.7]) yields that F ′ is a minimal Q′-free resolution of k, and thus TorQ
′

i (R, k) =
Hi(F ). Let T denote that Tate construction on E and z. Then T = F 〈wh+1, . . . , wb | ∂wi = zi〉.

Let π denote the natural surjection Q′ → R; we note a connection between Kerπ and pdQ′ R.

Remark 4.3. By Construction 4.2, Kerπ contains only zerodivisors. A result of Auslander and
Buchsbaum [2, Proposition 6.2] now yields the implication pdQ′ R <∞ =⇒ (0 :Q′ R) = 0.

The following result (Theorem B) is the improvement of Theorem 3.1.

Theorem 4.4. Suppose there exists an integer q ≥ 2 such that Hi(T ) = 0 for i = [q, q + b − 1].
Then R is a complete intersection.

Proof. Here we follow the strategy of Gulliksen [11]. Without loss of generality, we may assume that
R is complete. Recall the notation of Construction 4.2. Let π : Q′ → R be the natural surjection.
We will show that Kerπ = 0; by Remark 4.3 it will be enough to show that pdQ′ R <∞.

Recall that TorQ
′

i (R, k) = Hi(F ). By hypothesis, there exists an integer q ≥ 2 such that Hi(T ) =
0 for i = [q, q+ b− 1]. Noting that we have obtained T from F by adjoining at most b− 1 variables

of degree two, Lemma 3.3 (1) yields that Hq+b−1(F ) = 0. This implies that TorQ
′

q+b−1(R, k) = 0 for

some q ≥ 2. Hence, pdQ′ R <∞, completing the proof. �
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Let R〈X〉 denote an acyclic closure of k over R and order the variables X such that |xi| ≤ |xj | for
i < j; see [4, Construction 6.3.1]. Fix an integer p and let Y denote the extension2 R〈xi : i ≤ p〉.

We note that the following result appears implicitly in work of Gulliksen [11]:

Proposition 4.5. Let F be as in Construction 4.2 and suppose that F ⊆ Y . If Hi(Y ) = 0 for all
i� 0, then R is a complete intersection.

Proof. The DG-algebra Y satisfies the conditions of [11, Lemma 1]. Now Hi(Y ) = 0 for all i � 0
and Y is obtained from F by an adjunction of (finitely many) variables, so a repeated application

of [11, Lemma 2] yields Hi(F ) = 0 for all i � 0. But Hi(F ) = TorQ
′

i (R, k), so that pdQ′ R < ∞.
Consequently, Remark 4.3 yields that R is a complete intersection. �

In particular, the eventual vanishing of H∗(T ) is equivalent to the complete intersection property
of R (i.e, the quasi-complete intersection property of m).

Assmus [1, Theorem 2.7] establishes that the complete intersection property of R is equivalent
to the vanishing of H2(T ). We now develop the tools needed to extend on this result to show that
the vanishing of H3(T ) or H4(T ) also detects the complete intersection property.

The following lemma highlights two situations in which the adjunction of variables to annihilate
a non-zero homology class preserves the vanishing of homology in a higher degree.

Lemma 4.6. Let A be a DG R-algebra and assume that H0(A) = k. Let i be an integer, and
suppose that Hi(A) 6= 0. Let z be a cycle representing a non-zero homology class in Hi(A) and set
B = A〈w | ∂w = z〉.

(1) If i ≥ 2 is even and H1(A) = 0 = Hi+2(A) = 0, then H1(B) = 0 = Hi+2(B) = 0.
(2) If Hi+1(A) = 0, then Hi+1(B) = 0.

Proof. For (1), the equality H1(B) = 0 is clear, and the equality Hi+2(B) = 0 follows immediately
from a portion of the exact sequence from [4, Remark 6.1.5]:

· · · Hi+2(A) Hi+2(B) H1(A) · · ·

0 0

Hi+1(ϑ)

Let ζ denote cls(z). For (2), suppose first that i is even.
We consider the following portion of exact sequence in homology of [4, Remark 6.1.5]:

· · · Hi+1(A) Hi+1(B) H0(A) Hi(A) · · ·

0 k

Hi(ϑ) ·ζ

Multiplication by ζ is injective on H0(A), so that Hi+1(B) = 0, as desired.
In the case where i is odd, the relevant portion of the exact sequence in homology from [4, Remark

6.1.6] is the following:

Hi+1(A) Hi+1(B) H0(B) Hi(A) Hi(B) H−1(B)

0 k 0

Hi+1(ϑ) ði+1 Hi(ι)

By construction Hi(ι)(ζ) = 0, and so Hi(ι) is not injective. Thus ði+1 is not the zero map and
so ði+1 is injective. Thus Hi+1(B) = 0. �

2An example of such an extension is a partial acyclic closure R〈X≤n〉.
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In the next result (Theorem C, condition (1)), we make use of the deviations εn(R) of R, for
which we use [4, §7] as a reference. Let T denote the Tate construction on E; see Remark 1.2.

Theorem 4.7. If Hi(T ) = 0 for some i = 3 or 4, then R is a complete intersection.

Proof. We may assume that R is not a complete intersection, so that H2(T ) 6= 0.
If H3(T ) 6= 0, then we apply Lemma 4.6 (2) and adjoin variables of degree three to obtain a

partial acyclic closure B of k with Hi(B) = 0 for i ∈ {1, 2, 3}. This yields ε4(R) = 0, so that by a
result of Gulliksen [12, Theorem 3.5.1], R is a complete intersection, a contradiction.3

Suppose now that H4(T ) = 0. We adjoin variables of degrees 3 and 4; applying Lemma 4.6 (1)
and (2), we obtain a partial acyclic closure V of k with Hi(V ) = 0 for i = 1, 2, 3, 4, so that ε5(R) = 0.
Now Halperin [13, Theorem B] gives that R is a complete intersection, a contradiction. �

5. Rigidity of the Tate construction

In this section (R,m, k) is a local ring and let T denote the Tate construction on m.
Previous work ([1, Theorem 2.7]) and the work of this paper (Theorem 4.7) suggest the following

question:

Question 5.1. Does the implication

Hi(T ) = 0 for some i ≥ 0 =⇒ R is a complete intersection

hold for every local ring R?

Suppose that ϕ : Q→ R is a surjective homomorphism of local rings and M is a finite R-module.
Recall the Poincaré series of M over R:

PRM (t) =
∞∑
n=0

βRn (t)tn ∈ Z[[t]].

The following result relates the Betti numbers of M over R and Q.

Proposition 5.2. [4, Proposition 3.3.2] Then there is a coefficientwise inequality of formal power
series

(5.3) PRM (t) 4
PQM (t)

1− t(PQR (t)− 1)
.

We present a class of rings for which Question 5.1 holds. This class is defined in terms of Golod
homomorphisms, for which we use [3, 4] as references.

Definition 5.4. [4, §3.3] A surjective homomorphism ϕ : Q→ R is called a Golod homomorphism
if equality holds in (5.3) for M = k.

Theorem 5.5. Suppose that there exists a complete intersection ring Q and a Golod homomorphism

ϕ : Q→ R̂. If Hi(T ) = 0 for some i ≥ 5, then R is a complete intersection.

This is Theorem C, condition (2).

Proof. By [8, Proposition 5.13] we may assume that depthQ(R) = 0. We endeavor to show that
Kerϕ = 0. By Remark 4.3 it is enough to show that pdQR <∞.

Let F ′ denote the Tate construction on n, and put F = R⊗QF ′. As Q is a complete intersection,
we have that F ′ is a minimal Q-free resolution of k. Let A denote the trivial extension knH≥1(F ).
Then [3, Theorem 2.3] yields that F and A are equivalent as DG-algebras.

Let y be a set of cycles of degree one whose homology classes form a minimal generating set of
H1(F ), and let X denote the Tate complex on A and y. Then [12, Proposition 1.3.5] yields the
equivalence T ' X. Thus, there exists an integer i ≥ 5 with Hi(X) = 0.

3The indexing convention of the εn differs from that of Gulliksen and Levin [12]; ε3 of [12] stands for ε4 of [4].
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As the differential on A is trivial, we observe that X exhibits a direct sum decomposition (cf.
Remark 1.5):

X =
⊕
j≥0

Dj ,

where Dj is the complex

0 Hj(F ) Hj−1(F )⊗ Γk1W · · · H1(F )⊗ Γkj−1W ΓkjW 0
∂
Dj

1 ∂
Dj

2
∂
Dj

j

Consequently, we have a decomposition of the homology of X:

(5.6) Hk(X) =
⊕
i≥0

Hi(D
k−i) =

k⊕
i=0

Hi(D
k−i).

The equivalence F ' A yields that [H≥1(F )]2 = 0, and so the differential ∂
Dj

i is zero for each

i in {1, 2, . . . , j − 1}. In light of (5.6), this yields that H0(Dk) = Hk(F ) for each k ≥ 2, so that

Hk(X) contains Hk(F ) as a summand for each k ≥ 2. As such, Hi(F ) = 0, and so TorQi (R, k) = 0.
Therefore, pdQR <∞, and hence R is a complete intersection. �

Remark 5.7. The hypotheses of Theorem 5.5 are satisfied in the following situations:

(1) R is a Golod ring,
(2) R is Gorenstein and embdimR = 4; see [14, Theorem B],
(3) codepthR ≤ 3; see [8, Proposition 6.1],
(4) m has a Conca generator (i.e., there exists x ∈ m such that x2 = 0 and m2 = xm); see

[7, Theorem 1.4].
(5) R is a compressed Gorenstein ring of socle degree s and embedding dimension e for 2 ≤ s 6= 3

and e > 1; see [19, Theorem 5.1].
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ring is rational, J. Pure Appl. Algebra 38 (1985), no. 2-3, 255–275.
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