Dr. Richard Cangelosi

Research Interests & Publications

eagleBeachJuneauAK

As an applied mathematician interested in modeling nonlinear phenomena, my focus is on applications related to the life sciences.  I enjoy working collaboratively with Gonzaga undergraduates on research projects involving population dynamics, biological pattern formation, delay equations, perturbation theory, chaos theory and the fractal geometry of strange attractors among others.

Refereed Publications

1.      Cangelosi, R. A., Schwartz, E., & Wollkind, D. J. A quasi-steady-state approximation to the basic viral dynamics model with a noncytopathic effect. Frontiers in Microbiology: Infectious Disease. Accepted Jan. 10, 2018.

2.      Davis, M. G., Wollkind, D. J., Cangelosi, R. A., & Kealy-Dichone, B. J.,  2018. The behavior of a population interaction-diffusion equation in its subcritical regime. Involve, 11(2), 297–309.

3.      Chaiya, I., Wollkind, D. J., Cangelosi, R. A., Kealy-Dichone, B. J., & Rattanakul, 2015. Vegetative rhombic pattern formation driven by root suction for an interaction-diffusion plant-ground water model system in an arid environment.  American Journal of Plant Science, 6(8), DOI 10.4236/ajps.2015.68129.

4.      Kealy-Dichone, B., Wollkind, D.J., Cangelosi, R. A. 2015. Rhombic analysis extension of a plant-surface water interaction-diffusion model for hexagonal pattern formation in an arid flat environment.  American Journal of Plant Science, 6(8), DOI 10.4236/ajps.2015.68128.

5.      Cangelosi, R. A., Wollkind, D. J., Kealy-Dichone, B. J., Chaiya, I. 2014. Nonlinear Turing patterns for a mussel-algae model, J. Math. Biol. DOI 10.1007/s00285-014-0794-7.

6.      Cangelosi, R. A., Olson, J., Madrid, S., Cooper, S., & Hartter, B., 2013. The negative sign and exponential expressions: Unveiling students’ persistent errors and misconceptions. Journal of Mathematical Behavior, 32(1), 69-82.

7.      Schwartz, E. J., Pawelek, K. A., Harrington, K., Cangelosi, R. A., & Madrid, S. A., 2013. Immune Control of Equine Infectious Anemia Virus Infection by Cell-Mediated and Humoral Responses. Applied Mathematics, 4, 171-177.

8.      Cangelosi, R. & Goriely, A., 2007. Component retention in a principal component analysis with application to cDNA microarray data.  [Online].  Available from http://www.biology-direct.com/content/2/1/2