1. (6 pts) Calculate the differential of volume for a cylindrical can with end caps: $V=\pi r^{2} h$. Estimate the change in volume for a can with radius 2 inches and height 10 inches if the radius is increased by 0.1 in and the height decreased by 0.1 in .
2. (5 pts) Find the derivative of $f(x, y)=x^{2} y+x y^{3}$ at the point $(2,1)$ in direction $\langle-1,1\rangle$.
3. (4 pts) Use the chain rule to find $\frac{\partial z}{\partial t}$ for $z=e^{-x^{2}} \sin (y)$ where $x=s^{2} t$ and $y=s+t^{3}$.
4. (6 pts$)$ Find the equation of the tangent plane to the surface given by $f(x, y)=x^{2} y+x y^{3}$ at the point $(2,1)$.
5. (4 pts) Find all critical points and local extrema of $f(x, y)=x^{2}+y^{2}-x y$. (Note: Part of the formulas for the second derivative are given.)
$D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$
$D>0$
$D>0$
$D<0$
