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Chapter 14 §1,2,3 – Summary and Review (draft: 2019/04/15-16:41:15)

14.1 Vector fields

Summary of topics and terminology:

• 2D vector field: F(x, y) = 〈P (x, y), Q(x, y)〉 = P (x, y)i +Q(x, y)j

• 3D vector field: F(x, y, y) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉
= P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k

• Radial vector field: 2D F = 〈x, y〉 = r
3D F = 〈x, y, z〉 = r
both point away form the origin and grow in magnitude as we move

away from the origin.

• Other radial vector fields:

• F = r
|r| (constant magnitude)

• F = r
|r|k (k > 1 magnitude decays as we move away from origin,

k ≤ 0 magnitude grows as we move away from origin.)

• rotational vector fields: Clockwise: F = 〈y,−x〉 (negative orientation)
counter-clockwise: F = 〈−y, x〉 (positive orientation)

• Be able to match vector field formulas with their graphs

• Gradient vector field F = ∇f , f is called a potential function.

• A gradient vector field is conservative.

• Be able to find a potential function or show that a vector field is not a gradient field.

• F = 〈P,Q〉 is a gradient field if Py = Qx. This ties back to Clairaut’s theorem that says
that fxy = fyx.

• To find a potential function, we set f(x, y) =
∫
Pdx+ h(y), then take the derivative w.r.t.

y of the result of that integral, set that equal to Q,a nd solve for h(y).

Example problems:

1. Find the gradient vector field for f(x, y) = 3x2y + xy3.

Solution:

∇f = 〈fx, fy〉 = 〈6xy + y3, 3x2 + 3xy2〉.

2. Find the gradient vector field for f(x, y, z) = xyz.

Solution:

∇f = 〈fx, fy, fz〉 = 〈yz, xz, xy〉.

3. Determine if the vector field F = 〈2x, 3y2〉 is a gradient field, and if so, find a potential
function f .

Solution:

fx = 2x thus f(x, y) = x2+h(y), so fy = h′(y) but we want this to equal 3y2 thus h(y) = y3.
So the potential function is f(x, y) = x2 + y3.
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4. Show that the vector field F = 〈xy,−xy2〉 is not conservative.

Solution:

∂
∂yxy = x 6= ∂

∂x(−xy2) = −y2 thus Py 6= Qx so this is not a gradient vector field.

5. Match the vector field formulas with their graphs:
(a) F = 〈−1, x〉 (b) F = 〈−y, x〉 (c) F = 〈x, y〉 (d) F = 〈x, 1〉

Solution: d, b, c, a

6. Sketch in some vectors for the gradient vector field of two function z = f(x, y) (left) and
z = g(x, y) (right) whose contours are plotted below. For f , the outermost contour is the
lowest z value. For g, the contours are labeled. Recall that contours close together indicate
a steep surface, and contours further apart indicate a more gentle slope.

Solution:

The vectors fir f will all point “inward” in the direction of steepest ascent and perpendicular
to the contours. The vectors will be longer where the contours are close together and shorter
where the contours are farther apart. The vectors for g will be “outward on the left side
(pointing out of a valley), and inward on the right side, pointing towards a peak.
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7. Describe the vector field F = 〈1,−z, y〉.
Solution:

There is counter-clockwise rotational motion in parallel to the yz plane (counterclockwise
relative to looking down from the positive x-axis), and all arrows point slightly in the positive
x-direction.

14.2 Line integrals

Summary of topics and terminology:

• Be able to parametrize curves, 2D: r(t) = 〈x(t), y(t)〉 and 3D: r(t) = 〈x(t), y(t), z(t)〉.

• Differential of arc-length: ds = |r′(t)|dt

• |r′(t)| =
√
x′(t)2 + y′(t)2 or

√
x′(t)2 + y′(t)2 + z′(t)2

• Plugging in a vector function into a scalar 2D function: f(r(t)) = f(x(t), y(t)). This gives
the part of a surface that is above the curve C given by vector function r(t). I like to think
of it being like creating a “fence” above curve C and below the surface.

• In 3D, f(r(t)) = f(x(t), y(t), z(t)).

• Line integral of f over C:
∫
C fds.

•
∫
C fds =

∫ b
a f(r(t)) |r′(t)|dt.

• Interpretation of line integral of scalar function: I like to think this gives the area of the
fence. It can give a negative answer too, just like single integrals in calculus.

• Line integral of a vector field over curve C:
∫
C F · dr.

• Interpretation of line integral of vector field: We can think of it actually as a line integral
of a scalar function, where the scalar function is actually the component of the vector field
that is tangent to the oriented curve. If the vector field general points along the curve, the
integral will be positive. If the vector field generally points against the curve, the integral
will be negative. You should be sure to understand this interpretation.

•
∫
C F · dr =

∫
C F ·T ds (where T = r′(t)

|r′(t)| is the unit tangent vector)

•
∫
C F · dr =

∫
C Pdx+Qdy with F = 〈P,Q〉 and dr = 〈dx, dy〉

•
∫
C F · dr =

∫ b
a F · r′(t)dt
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•
∫
C Pdx+Qdy =

∫ x1
x0
P (x, f(x))dx+

∫ y1
y0
Q(f−1(y), y)dy where y = f(x) is a way to represent

the curve C.

• Be sure to be able to parametrize curves, especially, circles, helices, lines, etc.
Circle: r(t) = 〈cos(t), sin(t)〉 for 0 ≤ t ≤ 2π.
Helix: r(t) = 〈cos(t), sin(t), t〉 for 0 ≤ t. (spirals counter-clockwise rel. to xy-plane and up
along z-axis. There are many variations of this.
Line segment: r(t) = 〈x0, y0, z0〉(1− t) + 〈x1, y1, z1〉t for 0 ≤ t ≤ 1.

• Be able to tell graphically when F ·T and F · n are positive, negative, or zero.

• For r(t) = 〈x(t), y(t)〉, we have that T = 1√
(x′(t))2+(y′(t))2

〈x′(t), y′(t)〉, and

n = 1√
(x′(t))2+(y′(t))2

〈y′(t),−x′(t)〉

Example problems:

1. Evaluate
∫
C fds where f(x, y) = x+ y2 along the line segment connecting (2, 3) to (5, 1).

Solution:

The line segment: r(t) = 〈2, 3〉(1−t)+〈5, 1〉t = 〈2+3t, 3−2t〉, for 0 ≤ t ≤ 1 thus r′ = 〈3,−2〉
and |r′| =

√
13.

ds = |r′|dt =
√

13 dt.

f(x, y) = x+ y2 with x(t) = 2 + 3t and y(t) = 3− 2t so f(r(t)) = 2 + 3t+ (3− 2t)2

So we have that
∫
C fds =

∫ 1
0 (2 + 3t+ (3− 2t)2)

√
13 dt

= 2t− 3
2 t

2 + 1
3(3− 2t)3 1

−2

∣∣∣1
0

= 2− 3
2 −

1
6 + 1

2 = 5
6

2. Evaluate
∫
C fdx for the same function and curve above.

Solution:

The line segment r(t) = 〈2 + 3t, 3− 2t〉 can be written as y = −2
3 (x− 2) + 3 with 2 ≤ x ≤ 5.

So we integrate
∫
C fdx =

∫ 5
2 f
(
x, −23 (x− 2) + 3

)
dx =

∫ 5
2

[
x+

(−2
3 (x− 2) + 3

)2]
dx,∫ 5

2

[
x+

(−2
3 (x− 2) + 3

)2]
dx =

∫ 5
2 (x+ 1

9(13− 2x)2) dx = 1
2x

2 − 1
54(13− 2x)3|52 = 47

2

3. Is
∫
C F · dr positive or negative?

Solution:∫
Ca

F · dr < 0 for curve a since the vector field generally points in the ‘backward direction’
along the curve. Generally the angle between the vector field vectors and the tangent vector
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tho the curve will be between π/2 and π.∫
Cb

F · dr > 0 for curve b since the vector field generally points in the ‘forward direction’
along the curve. Generally the angle between the vector field vectors and the tangent vector
to the curve will be between 0 and π/2.

4. Calculate
∫
C F · dr for F = 〈2x, 3y + 1〉 and r = 〈t, t2〉 and 0 ≤ t ≤ 1.

Solution:∫
C F · dr =

∫ 1
0 〈2t, 3t

2 + 1〉 · 〈1, 2t〉 dt =
∫ 1
0 2t+ 6t3 + 2t dt = 2t2 + 6

4 t
4
∣∣1
0

= 3.5

This is a positive value, so if we were to plot this vector field and curve,we would see that
the vectors generally point in the forward direction along the curve.

5. Calculate the circulation of F = 〈y, x〉 on the unit circle (oriented positively).

Solution:

The unit circle is parametrized by r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ 2π.

This is a nice curve since |r′(t)| = 1, thus ds = |r′(t)|dt = 1 dt.∫
C F · dr =

∫ 2π
0 F(r(t)) · r′(t)dt

=
∫ 2π
0 〈sin(t), cos(t)〉 · 〈− sin(t), cos(t)〉

=
∫ 2π
0 (− sin2(t) + cos2(t))dt =

∫ 2π
0 cos(2t)dt = 0

Note that we have used the double-angle trig identities above.

If you graph this vector field, you’ll see that it flows with the curve on the left and right
sides, but against the curve on the top and bottom. Thus it makes sense that the net
circulation cancels out.

6. Calculate the (outward) flux of F = 〈y, x〉 across the unit circle (oriented positively).

Solution:

As above, the unit circle is parametrized by r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ 2π. But we need
to find the outward normal vector. So we add a zero k component and cross with the k unit
vector:

n = T× k = r′(t)
|r′(t)| × k = 〈− sin t, cos t, 0〉 × 〈0, 0, 1〉 = 〈cos t, sin t, 0〉

Thus
∫
C F · n ds =

∫ 2π
0 F(r(t)) · 〈cos t, sin t, 0〉 1 dt

=
∫ 2π
0 〈 sin t, cos t, 0〉 · 〈cos t, sin t, 0〉 dt

=
∫ 2π
0 2 sin(t) cos(t)dt

= sin2(t)|2π0 = 0

So in addition to having zero net circulation around the unit circle, this field also has zero
flux across it! Again, plotting the vector field provides some insight. There will be inward
flux from the NW and SE corners and outward flux in the NE and SW corners that cancel
each other out.

7. Calculate the flux and circulation of F = 〈−xy, 1〉 for the triangular loop (0, 0), (1, 0), (1, 2).

Solution:
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Here is a graph of the region from Desmos:

Curve sections and parametrizations:
I) r(t) = 〈t, 0〉 for 0 ≤ t ≤ 1. T = 〈1, 0〉 and n = 〈0,−1〉
II) r(t) = 〈1, t〉 for 0 ≤ t ≤ 2. T = 〈0, 1〉 and n = 〈1, 0〉
III) r(t) = 〈1− t, 2(1− t)〉 for 0 ≤ t ≤ 1. T = 1√

5
〈−1,−2〉 and n = 1√

5
〈−2, 1〉

Circulation:∫
C

F · dr =

∫
CI

F (r(t)) · r′(t) dt+

∫
CII

F (r(t)) · r′(t) dt+

∫
CIII

F (r(t)) · r′(t) dt

=

∫ 1

0
〈0, 1〉 · 〈1, 0〉 dt+

∫ 2

0
〈−t, 1〉 · 〈0, 1〉 dt+

∫ 1

0
〈−2(1− t)2, 1〉 · 〈−1,−2〉 dt

=

∫ 1

0
0 dt+

∫ 2

0
1 dt+

∫ 1

0
2(1− t)2 − 2 dt

= 0 + 2 +

[
−2

3
(1− t)3 − 2t

]1
0

= 2− 2 +
2

3
=

2

3

Flux:∫
C

F · n ds =

∫
CI

F (r(t)) · n |r′(t)| dt+

∫
CII

F (r(t)) · n |r′(t)| dt+

∫
CIII

F (r(t)) · n |r′(t)| dt

=

∫ 1

0
〈0, 1〉 · 〈0,−1〉 1 dt+

∫ 2

0
〈−t, 1〉 · 〈1, 0〉 1 dt+

∫ 1

0
〈−2(1− t)2, 1〉 · 1√

5
〈−2, 1〉

√
5 dt

=

∫ 1

0
(−1) dt+

∫ 2

0
(−t) dt+

∫ 1

0
4(1− t)2 + 1 dt

= −1− 2 +

[
−4

3
(1− t)3 − t

]1
0

= −3− 1 +
4

3
= −13

3

So the vector field F overall has an inward flux into the triangle, but it has a general positive
flow around the boundary of the triangular region. This makes intuitive sense because x
and y are both positive, so −xy is negative. Thus F has a negative horizontal component, so
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the vectors point from the SE to the NW generally. Furthermore the vector going into the
right side of the triangle are longer than those exiting along the hypotenuse. And vectors
are entering the triangle along the sides I and II, and only leaving the triangle along side
III, thus overall there is an inward flow/flux.

Here is a graph with the vector field overlaid on to the triangle:

Looking at the above graph, we can see that the vectors are perpendicular tot he bottom of
the triangle, so there is 0 circulation there, and there is positive circulation along the right
side since the vectors generally point upward there. Along the hypotenuse of the triangle,
the vectors generally are almost perpendicular or point against the flow downward along
the curve, thus we get a negative component to the circulation there, but these vectors are
shorter than those on the right side. So overall, we have a positive circulation along the
triangle.

8. Estimate the line integral
∫
C F · dr from the graph. Assume that everything is plotted

exactly to scale.

Solution:
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The curve is a line y = 5
6x, and the vector field is the same everywhere. The vectors all

point right with length 2.∫
C F · dr = integral of the projection of F onto C

So:
∫
C F · dr =

∫
C |F| cos(θ)ds =

∫
C 2 cos(θ)ds

We just need to figure out what the cosine of the angle between the line and vector field is,
but this is just the horizontal run of the line divided by its length: cos θ = 6√

61
.

Thus
∫
C F · dr =

∫
C |F| cos(θ)ds =

∫
C 2 · 6√

61
ds = 12√

61
· (length of C) = 12√

61
·
√

52 + 62 = 12.

We can confirm this be seeing that F = 〈2, 0〉 and r(t) = 〈6t, 5t〉 for 0 ≤ t ≤ 1.

14.3 Conservative vector fields

Summary of topics and terminology:

• F = 〈P,Q〉 is conservative if and only if Py = Qx.

• F = 〈P,Q,R〉 is conservative if and only if Py = Qx, Pz = Rx, and Qz = Ry.

• F is conservative means that there is a function f such that F = ∇f

•
∫
C F · dr = 0 if F is conservative and C is a closed curve.

• Fundamental theorem of line integrals:
∫
C ∇f · dr = f(r(b))− f(r(a)) where C is any curve

that goes from r(a) to r(b).

• Be able to break loops up into different pieces and parametrize each.

• F is path-independent if the value of the integral
∫
C F · dr does not depend on the shape of

the curve, but only on the starting and ending points.

• A vector field is path-independent if and only if it is conservative.

• Understand that a closed curve can be broken into different pieces: C = C1 ∪ C2 and that
the integral over C is the sum of the integrals over C1 and C2. Of course we need to be
careful to keep the orientations.

∫
C1∪C2

F · dr =
∫
C1

F · dr +
∫
C2

F · dr.

• If we reverse the orientation of a curve C (this can be denoted by −C), the the integral flips
sign:

∫
−C F · dr = −

∫
C F · dr.

Example problems:

1. Show that F = 〈y2, 2xy − 1〉 is conservative and find potential function f .

Solution:

If F = ∇f , then F = 〈P,Q〉 and Py = Qx.

Py = ∂
∂yy

2 = 2y and Qx = ∂
∂x(2xy − 1) = 2y so it is indeed a conservative vector field.

We need to find a potential f such that F = 〈fx, fy〉 with fx = y2 and fy = 2xy − 1.

We integrate fx w.r.t. x:
∫
y2 dx = xy2 + h(y). We need to add an arbitrary funciton of y

as our “constant” of integration here.

So f(x, y) = xy2+h(y). Now differentiate w.r.t. y and set it equation to the 2nd component
of our vector field. fy = 2xy + h′(y) thus we must have that 2xy + h′(y) = 2xy − 1 so
h′(y) = −1 and h(y) = −y.

Now we have that f(x, y) = xy2 − y and F = ∇f .
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2. Calculate
∫
C F · dr for F above and C is a curve that goes form (0, 1) to (3, 2).

Solution:

We have that f(x, y) = xy2− y and F = ∇f . By the fundamental theorem of line integrals:∫
C
∇f · dr =

∫ b

a
∇f(r(t)) · r′(t) dt = f(r(b))− f(r(a))

so ∫
C
∇f · dr = f(3, 2)− f(0, 1) = (3 · 22 − 2)− (0 · 12 − 1) = 12− 2− 0 + 1 = 11

3. With the same vector field F as above, calculate
∫
C F · dr where C is the triangle with

vertices (0, 0), (0, 3), (3, 5).

Solution:∫
C F · dr = 0 because F is conservative and C is a closed loop.

4. Assume that C1 is the upper semi-circle that goes from (−1, 0) to (1, 0), and
∫
C1

F · dr = 5,

and F is path-independent. Calculate
∫
C2

F ·dr where C2 is the line segment that goes from
(1, 0) to (−1, 0).

Solution:

We have that
∫
C2

F · dr = −
∫
C1

F · dr = −5 because C1 and C2 together form a closed loop

and thus 0 =
∫
C1∪C2

F · dr =
∫
C1

F · dr +
∫
C2

F · dr.

Since F is path-independent, we also know that it is conservative and is thus a gradient
vector field.

See the figure below.

5. If
∫
C F · dr = 0, for vector field F and closed curve C, are we guaranteed that F is conser-

vative?

Solution:

No! We are only guaranteed that F is conservative (path-independent) if
∫
C F · dr = 0 for

ALL closed curves C.

6. Consider the curves: C1 is the line segment from (0, 0) to (1, 1), C2 is the line segment
from (1, 1) to (−5, 1), and C3 is the line segment from (−5, 1) to (0, 0). If we know that∫
C1

F · dr = 2,
∫
C2

F · dr = −3, and
∫
C3

F · dr = 8, then calculate
∫
C F · dr where C is the

triangle with vertices (0, 0), (1, 1), (−5, 1) oriented clockwise.

Solution:

Note that the orientation is flipped for the triangle C as opposed to the original line segments
mentioned in the statement of the problem.

We have that C1 ∪ C2 ∪ C3 make up the triangle we are interested in, but collectively, our
line segments create a positively-oriented triangle (counter-clockwise). We are supposed to
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calculate the integral over the triangle in clockwise fashion. So we will need to add the
integrals of our line segments and then multiple that by a negative.∫
C F · dr = −(2− 3 + 8) = −7

Also note that this makes no assumption about the vector field. In fact, since we have a
closed loop where the integral is non-zero, we are guaranteed that this vector field is not
conservative.
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