Chapter 14 §4,5 - Summary and Review (draft: 2019/04/22-11:18:37)

14.4 Green's theorem

Summary of topics and terminology:

- All of the following conditions are equivalent:
n! $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed loops C
n \mathbf{F} is path-independent
nathe for all paths C that go from point A to point B
n+ \mathbf{F} is conservative
U" there exists a potential function f such that $\mathbf{F}=\nabla f$.
Int $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$ where curve C is parameterized by $\mathbf{r}(t)$ for $a \leq t \leq b$.
- Green's Theorem for vector field $\mathbf{F}=\langle P, Q\rangle$ and simply connected region D with counterclockwise oriented boundary curve $C=\partial D$.
n" Circulation form:

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

nut Flux form:

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D}\left(P_{x}+Q_{y}\right) d A
$$

- Use Green's theorem to calculate area:

$$
A(D)=\iint_{D} d A=\oint_{\partial D} x d y=-\oint_{\partial D} y d x=\frac{1}{2} \oint_{\partial D} x d y-y d x
$$

Example problems:

1. Calculate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the rectangle bounding region $[0,2] \times[0,3]$ and $\mathbf{F}=\left\langle 3 x^{2} y, x+y^{3}\right\rangle$.
2. Calculate the area of the unit circle using Green's theorem.
3. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}=\left\langle 2 x y^{2}, 2 x^{2} y-1\right\rangle$ and C is given by $\mathbf{r}(t)=\left\langle\cos (2 t)+t^{3} \sin (t), \cos (t)-\right.$ $\left.t^{2} \sin (t)\right\rangle$ for $0 \leq t \leq \pi$. (hint: Is \mathbf{F} path-independent?)
4. Calculate $\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s$ using Green's theorem for $\mathbf{F}=\langle 2 x y, x-y\rangle$ and D is the region bounded by the x-axis and the parabola $y=1-x^{2}$.

14.5 Divergence and curl

Summary of topics and terminology:

- $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$ is a 3D differential operator.
- $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=P_{x}+Q_{y}+R_{z}$. This is a dot product, so divergence is a scalar.
- $\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left\langle R_{y}-Q_{z},-\left(R_{x}-P_{z}\right), Q_{x}-P_{y}\right\rangle$. This is a cross product, and curl is a vector.
- 2D divergence: $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=P_{x}+Q_{y}$

This is what is inside the double integral in the flux form of Green's theorem.

- 2D curl: curl $\mathbf{F}=Q_{x}-P_{y} . \quad$ (*this is only in 2D!!)

Technically the curl is: curl $\mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 0\right\rangle \times\langle P, Q, 0\rangle=\left(Q_{x}-P_{y}\right) \mathbf{k}$
Curl is always a vector, generally, but for a vector field in the $x y$-plane, it will always point along the z-axis so we tend to just take the scalar component.
This is inside the circulation form of Green's theorem double integral (without the \mathbf{k})

- Curl describes the rotational or twist-like character of a vector field.

Imagine putting a little paddle wheel in the vector field (and having its axis fixed at that location) and thinking of the vectors as fluid flow velocities. If the force on one side of the paddle wheel is stronger, it will rotate.
It is tricky to really understand what this means, but generally if we move in the positive y direction, the horizontal component of the vectors decreases, and if we move in the positive x-direction, the vertical component of the vectors increases.
n- Here are some examples with positive curl:

From left to right:
(1) $\mathbf{F}=\langle-y, 0\rangle$. For positive y, the vectors are pointing left, and as we move up, the vectors get longer thus $P_{y}<0$. For negative y, the vectors are pointing right, and as we move up, the vectors get shorter thus $P_{y}<0$.
(2) $\mathbf{F}=\langle 0, x\rangle$. For positive x, the vectors are pointing up, and as we move right, they get longer thus $Q_{x}>0$. For negative x, the vectors are pointing down, and as we move right, they get longer thus $Q_{x}>0$.
(3) and (4) $\mathbf{F}=\langle-y, x\rangle$. As we follow the vectors forward, there is a counter-clockwise rotation.
n'* Here are some examples with negative curl:

There are very similar to those above, but with the arrows reversed. Generally, there is a clockwise rotation to them or more specifically, $Q_{x}<0$ and or $P_{y}>0$.
n***Note that it can be quite difficult to assess curl visually as it does not always look like positive or negative rotation.
n* These vector fields appear to rotate counter-clockwise, but the one on left has curl zero, and the one on the right has positive curl.

Unt This vector field has positive curl for $x>0$ and negative curl for $x<0$.

- Divergence describes the source character of a vector field.

Generally, if you look follow along the vector's forward direction, if they get longer, then there is positive divergence or source behavior, and if they get shorter, then there is negative divergence of sink behavior.
| \quad * Here are some examples with positive divergence:

Int Here are some examples with negative divergence:

n****Note that it can be difficult to assess divergence visually. There are two components, vertical and horizontal. It may be that the point is a source vertically and a sink horizontally or vice versa.

- A vector field that has zero curl in a given region is called irrotational on that region
- A vector field that has zero divergence in a given region is called source-free on that region
- Divergence of curl is zero: $\nabla \cdot(\nabla \times \mathbf{F})=0$ or $\nabla \cdot(\operatorname{curl} \mathbf{F})=0$. This means that if we think of the curl as a vector field, it is source-free.
- Curl of a gradient field is zero. $\nabla \times \nabla f=\mathbf{0}$. Note that this is a zero vector. This means that a conservative vector field is irrotational.
- The conditions for curl $\mathbf{F}=\mathbf{0}$ are identical to the conditions for checking if a vector field is conservative. Thus curl $\mathbf{F}=\mathbf{0}$ implies that the vector field is indeed conservative. So conservatives fields are irrotational, and any irrotational vector field is conservative.
- General rotation vector field: $\mathbf{F}=\mathbf{a} \times \mathbf{r}$ has curl given by $\nabla \times \mathbf{F}=2 \mathbf{a}$.

Example problems:

1. Out of the 4 vectors fields below, one has positive curl, one has negative curl, one has positive divergence and one has negative divergence. Identify which is which.

2. Calculate the divergence and curl of $\mathbf{F}=\langle-x y+z, z, y+x\rangle$
3. Show that this is a conservative vector field by taking its curl. $\mathbf{F}=\langle y z, x z, x y\rangle$
