1. (5 pts) Calculate the curl and divergence of $\mathbf{F}=\langle x-y, z y, x+y\rangle$.

Solution:

$\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\langle 1-y,-(1-0), 0-(-1)\rangle=\langle 1-y,-1,1\rangle$
$\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=1+z+0$
2. (5 pts) Calculate the flux of $\mathbf{F}=\langle 3 x, 2 y, z\rangle$ through the surface $x+\frac{y}{2}+\frac{z}{2}=1, x \geq 0, y \geq 0, z \geq 0$ oriented with upward normals.

Solution:

Our surface is $z=f(x, y)=2-2 x-y$ and thus the parameterization is $\mathbf{r}(x, y)=\langle x, y, 2-2 x-y\rangle$ with normal vector $\mathbf{r}_{x} \times \mathbf{r}_{y}=\left\langle-f_{x},-f_{y}, 1\right\rangle=\langle 2,1,1\rangle$.
In the $x y$-plane, our region of integration is the triangle bounded by $x=, y=0$ and $y=2-2 x$.
The flux integral is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{2-2 x}\langle 3 x, 2 y, 2-2 x-y\rangle \cdot\langle 2,1,1\rangle d y d x \\
& =\int_{0}^{1} \int_{0}^{2-2 x}(6 x+2 y+2-2 x-y) d y d x \\
& =\int_{0}^{1} \int_{0}^{2-2 x}(4 x+y+2) d y d x \\
& =\int_{0}^{1}\left[2(2 x+1) y+\frac{1}{2} y^{2}\right]_{0}^{2-2 x} d x \\
& =\int_{0}^{1} 2(2 x+1)(2-2 x)+\frac{1}{2}(2-2 x)^{2} \quad d x \\
& =\int_{0}^{1} 4(2 x+1)(1-x)+\frac{4}{2}(1-x)^{2} \quad d x \\
& =\int_{0}^{1}(1-x)[4(2 x+1)+2(1-x)] d x \quad(\text { w/ slick factoring out of }(1-x)) \\
& =\int_{0}^{1}(1-x) 6(1+x) d x \\
& =\int_{0}^{1}\left(6-6 x^{2}\right) d x \\
& =\left[6 x-2 x^{3}\right]_{0}^{1}=4
\end{aligned}
$$

3. (5 pts) Use Green's theorem to calculate $\oint_{\partial R} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}=\langle-y, x+y\rangle$ and $R=[0,2] \times[0,1]$.

Solution:

By Green's theorem:
$\oint_{\partial R} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left(Q_{x}-P_{y}\right) d A=\iint_{R}(1+1) d A=\int_{0}^{1} \int_{0}^{2} 2 d x d y=2 \cdot A(R)=2 \cdot 2 \cdot 1=4$
4. (5 pts) Calculate:
a) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}=\left\langle 2 x+y, 3 y^{2}+x\right\rangle$ and
b) $\oint_{C} \mathbf{G} \cdot \mathbf{n} d s$ for $\mathbf{G}=\left\langle x^{2}+y,-2 x y\right\rangle$
where C is the curve shown in the figure below.

Solution:

a) The 2D curl of $\mathbf{F}=\left\langle 2 x+y, 3 y^{2}+x\right\rangle$ is $Q_{x}-P_{y}=1-1=0$. Thus this vector field is irrotational. By Green's theorem, $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(Q_{x}-P_{y}\right) d A=0$
b) The 2D divergence of $\mathbf{G}=\left\langle x^{2}+y,-2 x y\right\rangle$ is $P_{x}+Q_{y}=2 x+(-2 x)=0$. Thus this vector field is source-free. By Green's theorem, $\oint_{C} \mathbf{G} \cdot \mathbf{n} d s=\iint_{D}\left(P_{x}+Q_{y}\right) d A=0$
5. (5 pts) Label the vector fields in the figures below as having negative, zero, or positive divergence.

Solution:

Going left to right:

1) The vectors have zero vertical component and the horizontal component is negative. As we move right (in positive x direction) the horizontal component gets shorter. This means it increases (gets less negative). So $Q_{x}>0$. The divergence is $Q_{x}+P_{y}=($ positive $)+0$.
If we follow the vectors forward, then they get longer, and that is a signal of positive divergence (be careful, as this doesn't absolutely prove it, but it does for a constant direction vector field.
2) These vectors have both constant length and constant direction, so they have both zero curl and zero divergence.
3) These have zero horizontal component, thus $Q=0$ and $Q_{x}=0$. We can see that $P>0$ and as we move int eh positive y direction, they get shorter, thus $P_{y}<0$. The divergence is $Q_{x}+P_{y}=0+$ (negative).
6. (5 pts) Calculate the surface area of the right-circular cone with height and base radius both equal to 5 (with open base, so just the conical shell). Also find both inward and outward normal vectors.

Solution:

We can use the cone $z^{2}=x^{2}+y^{2}$ and let $0 \leq z \leq 5$. This is the upper inverted cone. We parameterize this with cylindrical coordinates $x=z \cos \theta, y=z \sin \theta$, and $z=z$. So our parametric surface is $\mathbf{r}(\theta, z)=\langle z \cos \theta, z \sin \theta, z\rangle$.
$\mathbf{r}_{\theta} \times \mathbf{r}_{z}=\langle-z \sin \theta, z \cos \theta, 0\rangle \times\langle\cos \theta, \sin \theta, 1\rangle=\langle z \cos \theta, z \sin \theta,-z\rangle$
The magntude of which is $|\langle z \cos \theta, z \sin \theta,-z\rangle|=z \sqrt{2}$
So we just integrate this magnitude on the surface of the cone: $\iint_{S} d S=\int_{0}^{2 \pi} \int_{0}^{5} z \sqrt{2} d z d \theta=25 \pi \sqrt{2}$
The increasing θ direction goes around counter clockwise and the increaseing z direction is upward so crossing $\mathbf{r}_{\theta} \times \mathbf{r}_{z}$ gives the outward/downward normal and $-\mathbf{r}_{\theta} \times \mathbf{r}_{z}=\mathbf{r}_{z} \times \mathbf{r}_{\theta}$ gives the inward/upward normal
7. (5 pts) Evaluate both $\iint_{S} f d S$ and $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for S the sphere centered at the origin with radius 1 and $f(x, y, z)=$ $x+y+z$ and $\mathbf{F}(x, y, z)=\langle x, y z, x y\rangle$.

Solution:

We'll do the vector surface integral first. Using the divergence theorem, since the spherical shell is a closed surface:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint \int_{E} \operatorname{div} \mathbf{F} d V \\
& =\iiint_{E} \nabla \cdot \mathbf{F} d V \\
& =\iiint_{E}(1+z+0) d V \\
& =\iiint_{E} 1 d V+\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho \cos \phi \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{4}{3} \pi+\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta \\
& =\frac{4}{3} \pi+2 \pi \cdot \int_{0}^{1} \rho^{3} d \rho \cdot \int_{0}^{\pi} \cos \phi \sin \phi d \phi \\
& =\frac{4}{3} \pi+2 \pi \cdot \frac{1}{4} \cdot 0=\frac{4}{3} \pi
\end{aligned}
$$

We could have done less work if we realized that $g(x, y, z)=z$ is sort of like an "odd" function in that it is being integrated over a symmetric volume and has equivalent positive and negative parts which cancel out.

Now for the scalar surface integral.

$$
\begin{aligned}
\iint_{S} f d S & =\iint_{D} f(\mathbf{r}(\phi, \theta))\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}(\sin \phi \cos \theta+\sin \phi \sin \theta+\cos \phi) \sin \phi d \phi d \theta \\
& =0
\end{aligned}
$$

We can similarly argue that $f(x, y, z)=x+y+z$ has an "odd" like symmetry in that there are equal balance of positive and negative on the surface of the sphere for each variable which cancel out.

