Chapter 14 §7,8 - Summary and Review (draft: 2019/05/05-13:33:02)

14.7 Stokes' theorem

Summary of topics and terminology:

- Stoke's theorem:

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}
$$

- Be able to parameterize a variety of surfaces.
- Generally, we use Stoke's theorem to turn one of the integrals into the other. Often, the line integral on the right is easier since it only involves parameterizing a curve which can often be easier than parameterizing a surface. This is not an absolute rule though. Sometimes the surface integral is easier.
- Recall the definition of curl and how to calculate it.
- Recall how to parameterize curves, especially common ones line line segments and circles.

Example problems:

1. Evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\langle z, x, x y z\rangle$ and S is the surface of the box $[0,5] \times[0,1] \times$ $[0,2]$ but with open top and oriented with inward normals.

Solution:

Using Stoke's \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}$ we will evaluate the right side instead.
Since the top is open, our inward orientation is like the standard upward orientation, we'll need to parameterize our piecewise linear boundary curve counter-clockwise relative to the positive z-axis.

It will have four pieces, starting at the edge over the x axis and going counter-clockwise (which also happens to be our orientation for the curve itself).
(a) x goes 0 to $5, y=0, z=2, \mathbf{r}(t)=\langle 5 t, 0,2\rangle$ with $0 \leq t \leq 1$
(b) $x=5, y$ goes 0 to $1, z=2, \mathbf{r}(t)=\langle 5, t, 2\rangle$ with $0 \leq t \leq 1$
(c) x goes 5 to $0, y=1, z=2, \mathbf{r}(t)=\langle 5-5 t, 1,2\rangle$ with $0 \leq t \leq 1$
(d) $x=0, y$ goes 1 to $0, z=2, \mathbf{r}(t)=\langle 0,1-t, 2\rangle$ with $0 \leq t \leq 1$

We do this: $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d}{d t}(\mathbf{r}(t)) d t$
Here are the four integrals:
(a) $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 2,5 t, 0\rangle \cdot \frac{d}{d t}(\langle 5 t, 0,2\rangle) d t=\int_{0}^{1} 10 d t=10$
(b) $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 2,5,10 t\rangle \cdot \frac{d}{d t}(\langle 5, t, 2\rangle) d t=\int_{0}^{1} 5 d t=5$
(c) $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 2,5-5 t, 10-10 t\rangle \cdot \frac{d}{d t}(\langle 5-5 t, 1,2\rangle) d t=\int_{0}^{1}-10 d t=-10$
(d) $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 2,0,10(1-t)\rangle \cdot \frac{d}{d t}(\langle 0,1-t, 2\rangle) d t=\int_{0}^{1} 0 d t=0$

Thus when we add the results we get 5 .

14.8 Divergence theorem

Summary of topics and terminology:

- Divergence theorem:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

- Recall how to compute triple integrals
- Also remember spherical and cylindrical coordinates for triple integrals

Example problems:

1. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for $\mathbf{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$ and S being the upper hemispherical shell with radius 1 and closed bottom.

Solution:

The surface is given by the equations:
hemispherical shell: $x^{2}+y^{2}+z^{2}=1, z \geq 0$
bottom: $z=0, x^{2}+y^{2} \leq 1$.
Using the divergence theorem $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V$ we will evaluate the right side instead.
The divergence is $\nabla \cdot \mathbf{F}=3 x^{2}+3 y^{2}+3 z^{2}$
We will integrate this over the hemispherical volume. Now that this is a triple integral, we move to standard spherical coordinates. Note that we restrict the limits of ϕ since $z \geq 0$ in our volume.

$$
\begin{aligned}
\iiint_{E} \operatorname{div} \mathbf{F} d V & =\iint_{E}\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1}\left(3 \rho^{2}\right) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{1} 3 \rho^{4} d \rho \cdot \int_{0}^{\pi / 2} \sin \phi d \phi \cdot \int_{0}^{2 \pi} d \theta \\
& =\left[\frac{3}{5} \rho^{5}\right]_{0}^{1} \cdot[-\cos \phi]_{0}^{\pi / 2} \cdot 2 \pi \\
& =\frac{6}{5}
\end{aligned}
$$

