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1 Independence for random variables

Independence. Let X and Y be real-valued random variables. We say X and Y are
independent is the events {a < X < b} and {c < Y < d} are independent for all a, b, c, d.
Intuitively, this means that knowing the value of one of the variables doesn’t affect the
probabilities for the other variable.

Example: Let X be the outcome for a roll of a 6-sided die, and Y be the outcome for a
roll of a 20-sided die. It should be clear that they are independent random variables. The
probability that the first die is 5 and the second die is 18 can be calculated as

P (X = 5 and Y = 18) = P (X = 5) · P (Y = 18) =
1

6
· 1

20
.

Identically distributed. Random variables that have the same probability distribution
function are called identically distributed.

Example: Consider random variables X ={the numerical outcome of a fair, green 6-sided
die} and Y =the numerical outcome of a fair, red 6-sided die}. These two random variables
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have the same possible values {1, 2, 3, 4, 5, 6} and the same probabilities for each value; they
are identically distributed.

Example: Consider a coin that is flipped a number of times. The outcome for each coin
flip is identically distributed.

The two above examples are also independent. Random variable that are independent and
identically distributed are called... independent and identically distributed or for short, iid.

2 Law of large numbers

Let X1, X2, · · · , Xn be independent and identically distributed (iid) random variables with
mean µ. That is, E(Xi) = µ for i = 1, 2, . . . , n. Then

1

n

n∑
i=1

Xi converges in probability to µ as n→∞.

Another way to phrase this is that for all positive numbers ε > 0,

P

(∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ > ε

)
−→ 0 as n→∞.

How to interpret this: Remember that the actual value of 1
n

∑n
i=1Xi is still random, so it

could vary quite a bit if we were to sample different Xi’s. But as the sample size n gets
very large, the chance of the sample average deviating too far from the mean µ is very low.

We have already seen this in class in several cases.

Example: Let’s consider n coin flips with P (H) = p. Let Xi be the outcome of the ith coin
flip, i.e. Xi = 1 if the ith coin flip is heads and Xi = 0 if it is tails. Then the Xi’s are
independent, and they are all Bernoulli random variables with probability of success p. So
they are iid (independent and identically distributed). Thus if we take the average value of
n coin flips: Xn = 1

n

∑n
i=1Xi, as we increase n, this average will get very close to p (which

is the µ in this case). We say that Xn converges to p in probability as n→∞. Recall that
you observed this in one of the R activity assignments.

3 Central limit theorem

Let X1, X2, . . . , Xn be iid with mean µ and variance σ2. Note that we are not assuming
anything about their distribution other than the mean (expected value) and variance. They
could be drawn from a normal distribution, exponential distribution, binomial, Poisson, or
any other distribution that has a finite mean and variance.

Then when the sample size n is large, the sample mean will be approximately normally
distributed with mean µ and variance σ2/n.
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Remember that X1, X2, . . . , Xn is a random sample. So for a fixed sample size n, we can
draw a variety of different random samples. Each sample will have a different sample mean
Xn. So by drawing many many different samples, we will have many many different sample
means. If we create a histogram for our dataset of sample means, it will look very much
like the normal distribution with mean µ and variance σ2/n.

This is called the central limit theorem (CLT).

This is a remarkable fact!!!! This is one of the reasons why the normal distribution is so
important to all of statistics.

If the X1, X2, . . . , Xn are iid and Xi ∼ N(µ, σ2), in other words if they come from a normal
distribution exactly, then Xn is exactly normally distributed.

Summary of CLT:

Xi ∼ N(µ, σ2) for i = 1, 2, . . . , n then Xn ∼ N

(
µ,
σ2

n

)
We also get that the sum of the Xi’s are approximately normally distributed:

n∑
i=1

Xi ∼ N
(
nµ, nσ2

)
If the Xi are not normally distributed, this still holds approximately when the sample size
is sufficiently large.

How large should the sample size be so that the central limit theorem is a good approxi-
mation? In most cases n ≥ 30 is a general rule of thumb. Even with smaller sample sizes,
the approximation may not be too bad.

If the underlying distribution of the Xi is extremely skewed with a large probability for
very far away outliers, then n in the 100s, 1000s or larger may be necessary. For example,
if the Xi are exponentially distributed (a distribution that has a higher probability of large
outliers), then a sample size of 100 or greater will be required for a decent approximation
by the CLT.

3.1 Using the CLT to calculated probabilities for Xn

Since we know that Xn ∼ N
(
µ, σ

2

n

)
, we can now calculate the probability of the sample

mean being in a particular range of values. It is now just a normal random variable!

Example: Human height is approximately normally distributed with mean 175 cm and
standard deviation 7 cm. If 30 people are selected at random, approximate the probability
that the mean height of the sample is greater than 182 cm.
Solution: X30 ∼ N(mean = 175, std. dev. = 7/

√
30).

Thus P (X30 ≥ 182) =1-pnorm(182,mean=175,sd=7/sqrt(30))≈ 2(10)−8. This is a mi-
nuscule probability! Note that the cut-off of 182 is only 1 standard deviation above the
mean, so according to the 68-95-99.7 rule, there is a 17% chance of any individual data
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point being above 182, but the mean of a sample of 30 data points will rarely be that far
away from 175.

3.2 Justification for using CLT and the normal distribution

In scientific contexts, data is most often gathered from quantitative measurements. These
measurements will generally have a minimum and maximum possible value set by that
physical limitations inherent of the system of interest. For example, if we are measuring
a length of an object on planet earth, then there is an absolute limit on the measurement
that it is between zero and the size of the planet earth.

Generally the underlying variability of a measurement will be due to many individual, and
potentially interacting, sources. These can include error in reading the measuring device
(e.g. incorrect rounding or just copying the result incorrectly), variability or errors in the
manufacture of the measuring devices itself (e.g. slight variability in the precise locations
of markings on rulers), or variability in the chain pf physical processes involved in the
measurement process itself (e.g. electrical interference in a circuit or signal loss/noise).
Assume these sources of error are additive and each is sufficiently small. Let ej be the
error from error source j for j = 1, ..., k each with mean zero and variance σ2. Note that
we make no assumptions except zero mean and finite variance. Then by the central limit
theorem

k∑
j=1

ej ∼ N
(
0, kσ2

)
Let µ be the “true” value for the physical property being measured (e.g. the exact length).
Then our recorded measurement will be a random variable

X = µ+ e1 + e2 + · · ·+ ek = µ+
k∑
j=1

ej.

The expected value of X is

E(X) = µ+ E

(
k∑
j=1

ej

)
= µ+

k∑
j=1

E (ej) = µ

and the variance of X is

Var(X) = Var(µ) + Var

(
k∑
j=1

ej

)
= 0 +

k∑
j=1

Var (ej) =
k∑
j=1

σ2 = kσ2

and X is approximately normally distributed

X = µ+
k∑
j=1

ej ∼ N
(
µ, kσ2

)
.
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Even if the sources of error do not have the same variance and are not all mean zero, as
long as the sum of all sources of error is zero on average then the CLT still applies.

If the sources of error are not additive though, e.g. are multiplicative, then justifying the
use of the CLT become more difficult. E.g. if X = µ · (1 + e1) · (1 + e2) · · · (1 + ek) then
the CLT does not directly apply. In this case a logarithmic transform of the data may be
useful

lnX = lnµ+
k∑
j=1

ln(1 + ej)

If
∑k

j=1 ln(1 + ej) can be justified to have mean zero and finite variance, then lnX may be
approximately normally distributed.

4 Propagation of error

When an experimental or measurement apparatus is constructed, errors and variability may
be introduced at many places. If these errors are not strictly additive, then it can become
difficult to know how their variability will impact the variability of the total system or
measurement. Propagation of error methodology gives us a way to estimate these effects.

4.1 Partial derivatives and multivariable functions

In order to make propagation of error calculations, we must introduce the concept of partial
derivatives and multivariable. Let f be a function of x and y, f(x, y), then the partial
derivative of f with respect to x is denoted ∂f

∂x
and it found using all standard differentiation

rules and treating y as if it were a constant.

Example: f(x, y) = x2y3, then ∂f
∂x

= 2xy3 and ∂f
∂y

= 3x2y2.

Example: f(x, y) = x2 + y3, then ∂f
∂x

= 2x+ 0 and ∂f
∂y

= 0 + 3y2.

4.2 Variance of a multivariable function

If Z = f(X, Y ) and we wish to estimate the variance of Z in terms of the variance of X and
Y and we assume that X and Y are independent, then as long as we assume the variance
of X and Y is small, then

σ2
Z =

(
∂f

∂x

)2

σ2
X +

(
∂f

∂y

)2

σ2
Y .

If X and Y is not independent then the calculation is much more difficult.
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Example: Resistance R can be calculated by measuring voltage V and current I and then
using the equation R = V

I
. If we know that are measurement of voltage has variance σ2

V

and our measurement of current has variance σ2
I and that both of these variances are small

(i.e. that our measurements are reasonably accurate), the the variance of our resistance
calculation is given approximately by

σ2
R =

(
∂R

∂V

)2

σ2
R +

(
∂R

∂I

)2

σ2
I =

1

I2
σ2
R +

V 2

I4
σ2
I .

So if we know that voltage is 9± 0.25 volts and current is 2± 0.13 milliamps, then we can
estimate our error in resistance by

σ2
R =

1

22
(0.25)2 +

92

24
(0.13)2 = 0.35785

so that our resistance measurement with error bounds is

V/I ± σR = 9/2±
√

0.35785 = 4.5± 0.5982.

See the Wikipedia article Propagation of uncertainty for a great list of propagation of error
formulae for a variety of multivariable functions of two variables.

5 Sampling Distributions

In discussing the central limit theorem, we are really talking about sampling distributions.
A sampling distribution is the probability distribution of a sample statistic. A sample
statistic is something that you calculate from a sample. For example the sample mean and
sample variance are both two sample statistics. There are other sample statistics such as
the sample median, sample skewness, and even many others.

If the Xi are normally distributed with mean µ and variance σ2, then the sample mean
is normally distributed with mean µ and variance σ2

n
as stated by the CLT. As long as

n is large enough, we have that, approximately, Xn ∼ N(µ, σ
2

n
) by the CLT. This is true

regardless of the underlying distribution of the Xi.

Here we will look at another example of a sampling distribution.

Consider a discrete finite population: {1, 1, 1, 1, 1, 2, 2, 2, 3, 3}. We will sample from this
population with replacement. Let Xi be the ith individual selected. We’ll just select a
sample of size n = 2.

All possible samples of size 2, the probability of each, and the sample mean and sample
variance for each sample are given in the table below.

Then we look for each possible value of x and add up the probabilities to create a probability
mass function fX(x) for X. This is the sampling distribution for X.

Similarly we can create a probability mass function fS2(s2) for the sample variance S
2
.

This is the sampling distribution for S2. Note that we are treating the sample variance
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population

sample of
Xi values

a sample
mean Xn

generate
another
sample

and repeat

sample of
many Xn’s

Figure 1: Gathering many sample means flow chart diagram.

X1 X2 P (X1, X2) x s2

1 1.00 1.00 0.25 1.00 0.00
2 2.00 1.00 0.15 1.50 0.50
3 3.00 1.00 0.10 2.00 2.00
4 1.00 2.00 0.15 1.50 0.50
5 2.00 2.00 0.09 2.00 0.00
6 3.00 2.00 0.06 2.50 0.50
7 1.00 3.00 0.10 2.00 2.00
8 2.00 3.00 0.06 2.50 0.50
9 3.00 3.00 0.04 3.00 0.00

Table 1: All possible sample means for sample of size 2 from the given discrete probability
distribution. The sampling distribution for X2 can be constructed from this table.

S2 as a random variable now, because it’s value depends on the particular sample that is
gathered.

Here is an R code that you can use to generate such sampling distributions:

###############################

## EDIT the parameters below

###############################

# list possible x values (population)

# it’s best to keep this between 2 and 5 total values

x=c(1,2,3)

# weights for each x

# (number of tickets in the box)

w=c(5,3,2)

# sample size,
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x 1.00 1.50 2.00 2.50 3.00
fX(x) 0.25 0.30 0.29 0.12 0.04

Table 2: Sampling distribution for the sample mean.

s2 0.00 0.50 2.00
fS2(s2) 0.38 0.42 0.20

Table 3: Sampling distribution for the sample variance.

# use n=2 up to 6

# beyond that it may

# take up too much computer memory

n=2

###############################

## DO NOT edit below here (without risk!)

###############################

p=w/sum(w) # turn weights into probabilities

mu=sum(x*p) # population mean

sigsq=sum(x^2*p)-mu^2 # population variance

# now we create the list of all samples of size n,

# calculate sample statistics (mean and varaince of each sample)

S=expand.grid(replicate(n,x,simplify=FALSE))

pr=expand.grid(replicate(n,p,simplify=FALSE))

prob=cbind(0*1:length(S[,1])+1)

# calculate all sample means and their probabilities

xbar=0*prob

for (j in 1:n){

prob=prob*pr[,j]

xbar=xbar+S[,j]

}

# append table with probabilities and sample means

S$prob=prob

S$xbar=xbar/n

# calculate all sample varainces

var=0*prob

for (j in 1:n){

var=var+(S[,j]-S$xbar)^2

}

# append table with probabilities and sample variances

S$var=var/(n-1)

# construct sampling distributions

# for sample mean and sample variance

xbar_vals=as.numeric(names(table(S$xbar)))

var_vals=as.numeric(names(table(S$var)))

xbar_probs=0*1:length(xbar_vals)
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for (k in 1:length(xbar_vals)){

xbar_probs[k]=sum(S$prob[S$xbar==xbar_vals[k]])

}

var_probs=0*1:length(var_vals)

for (k in 1:length(var_vals)){

var_probs[k]=sum(S$prob[S$var==var_vals[k]])

}

# construct sampling distributions

xbar_samp_distr=rbind(xbar_vals, xbar_probs)

var_samp_distr=rbind(var_vals, var_probs)

xbar_mean=sum(xbar_samp_distr[1,]*xbar_samp_distr[2,])

xbar_var=sum(xbar_samp_distr[1,]^2*xbar_samp_distr[2,])-xbar_mean^2

var_mean=sum(var_samp_distr[1,]*var_samp_distr[2,])

var_var=sum(var_samp_distr[1,]^2*var_samp_distr[2,])-var_mean^2

# plot resulting sampling distributions

par(mfrow=c(2,1))

barplot(xbar_samp_distr[2,],

names.arg=as.character(xbar_samp_distr[1,]),

main="sample mean sampling distribution")

barplot(var_samp_distr[2,],

names.arg=as.character(var_samp_distr[1,]),

main="sample variance sampling distribution")

print(xbar_samp_distr)

print(var_samp_distr)
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6 Summary

R commands:

pnorm(x,mean=mu,sd=s/sqrt(n))

Notation and formulas:

LLN: Sample mean converges to µ (in probability) as sample size gets large:
xn → µ as n→∞. (when n is large x is unlikely to vary to far from µ)

LLN: Sample proportion converges to p (in probability) as sample size gets large:
p̂n → p as n→∞. (when n is large p̂ is unlikely to vary to far from p)

CLT: Sample mean is always approximately normally distributed as long as sample size is
sufficiently large:

X ∼ N(µ, σ2/n)

CLT: Sample proportion is always approximately normally distributed as long as sample
size is sufficiently large:

p̂ ∼ N(p, p(1− p)/n)

Normal approximation to binomial: X ∼ Bin(n, p) then X ∼ N(np, np(1− p)) as long as
n is large and np > 5, n(1− p) > 5.

Normal approximation to Poisson: X ∼ Pois(λ) then X ∼ N(λ, λ) as long as λ is large.

These normal approximations are consequences of the CLT and are more inaccurate in the
tails of the distributions.

Sampling distribution is the probability distribution of any quantity calculated from sample
data, e.g. x, s, x̃, etc. each have a sampling distribution.
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