
Math 321 – Chapter 6 – Hypothesis Testing
(draft version 2019/06/20-13:42:31)

Contents

1 Introduction 2

1.1 A simple example hypothesis test . . . . . . . . . . . . . . . . . . . . . . . 4

2 Terminology and methodology 5

3 Hypothesis test for mean µ, Z-test 6

3.1 2-sided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 1-sided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Hypothesis test for mean µ, T -test 7

4.1 2-sided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 1-sided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 A note about α 8

6 Hypothesis test for proportion p 9

7 Hypothesis test for variance σ2 9

7.1 1-sided, less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.2 1-sided, greater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Hypothesis test for difference in means µ1 − µ2 10

8.1 1-sided, less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.2 1-sided, greater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 Hypothesis test for difference in proportions p1 − p2 11

10 Chi-squared goodness of fit test 11

11 Chi-squared test for independence 12

12 Summary 15

1



Assume population parameter θ
takes on a specific value, θ = θ0

Collect sample data, and calculate sample statistic
θ̂ that we expect to be equal to θ0, i.e. E(θ̂) = θ0.

Compare sample statistic θ̂ to expected value θ0

Calculate likelyhood of θ̂.
We can do this since we know the underly-

ing distribution as assumed in the first step.

If θ̂ is too rare, reject assumption θ = θ0.
If θ̂ is not too unusual, then we think the

original assumption of θ = θ0 may be true.

Figure 1: Explanatory flow of a hypothesis test.

1 Introduction

Now that you are able to construct confidence intervals, the next step is to understand
hypothesis testing. There is a close relationship between the two statistical concepts.

Consider this situation: You are confronted with a particular claim about a statistical
population, e.g. told the mean breaking strength of a particular construction material is
5,000 lb, however, you gather data and find that the mean breaking strength in your sample
was only 4,900 lb. So you might begin to question the original claim as potentially being
untrue. We are in the world of randomness though, and maybe 4,900 lb breaking strength is
not all that unusual; maybe it’s not too far a perturbation from the expectation of 5,000lb.
Hypothesis testing is a way of determining if your data is sufficiently unusual to warrant
for rejecting the initial claim of a mean of 5,000 lb.

The general process for a hypothesis test:

This will depend on our knowledge of sampling distributions.
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Given null
hypothesis,
H0 : θ = θ0

1-sided alterna-
tive hypothesis,
Ha : θ < θ0

2-sided alterna-
tive hypothesis,
Ha : θ 6= θ0

1-sided alterna-
tive hypothesis,
Ha : θ > θ0

If θ̂ 6= θ0 then
we must test.

p = probability
that data gives
θ̂ at least as

extreme as that
from our data

Reject H0 if
p < α, otherwise
do not reject H0.

If θ̂ < θ0 then
we must test.

If θ̂ > θ0 then
we must test.

Figure 2: Technical flow of a hypothesis test.
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1.1 A simple example hypothesis test

If I hand you a coin and claim that it is a fair coin, and you look at it and see that it has
heads on both sides, would you believe me? No! You have collected data that leads you
to believe my original claim is false. In fact you have collected all possible data effectively
and are absolutely certain I am lying!

Let’s say you don’t look at the coin, but flip it once and get heads. Would you begin
to question my claim? No, getting heads is typical. It has probability 50% under the
assumption that the coin is fair.

What if you flip it twice, and, of course, get two heads in a row? Would you start to
question my claim yet? Probalby not, since under the assumption of fairness, our data has
probability 25%.

Do you see where this is going yet? How many heads in a row would you need to see in
order to start questioning whether or not the coin is fair?

Under the assumption of fairness, getting n heads in a row has probability 1
2n

.

We need to choose for ourselves, how rare is too rare. This is our chosen level of statistical
significance. Let’s say you will question fairness of the coin after 5 head sin a row. That
has probability 1/25 = 3.125%. That is indeed a fairly low probability and is an unlikely
outcome. So we have set 3.125% as our required significance level.

Maybe you don’t think that is rare enough and you require 10 heads in a row. The you are
choosing 1/210 ≈ 0.0977% as your significance level.

A more mathematical explanation Let Xi be the outcome of the ith coinflip. Xi = 1
for heads and Xi = 0 for tails. Each Xi is Bernoulli with parameter p, the probability of
success.

We flip the coin n times and find that all flips are heads. Our sample mean of n Bernoulli
trials is Xn = 1

n

∑n
i=1Xi. It happens that the sample mean is also p̂n which is our point

estimate for p the true probability of heads. For our double-sided heads coin, we will
always get p̂ = 1. Out of n coin flips, P (p̂n = 1) = 1

2n
. This becomes exceedingly rare as

we increase the number of flips, n. Let α be our chosen level of significance. If 1
2n
< α then

we reject the claim of fairness.

Eventually everyone now matter how demanding they are of rare-ness (no matter how small
they set α will become satisfied that the coin is in fact not fair. Even further, I think we
would all be quickly convinced that besides not being fair, clearly the coin is highly likely
to be double-sided heads!

If we demand a very rare outcome, say α = 10−12 (1 part in a trillion!), then that would
require n ≥ 28 coin flips to get 1

2n
< α.

One final consideration is that if we are really just interested in whether the coin is precisely
fair or not as opposed to whether it is double-sided heads vs fair, then that might change
our decision making process. Rather than going so extreme as to require10 or more heads
in a row to question the fairness of the coin, we may be satisfied with 5 heads in a row, since
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that is already extremely rare. We don’t need to try and confirm that it is double-sided.
It could simply be biased with, say, 75% chance of heads.

If the true probability of heads is 75%, then the probability of 5 in a row is (0.75)5 ≈ 23.7%.
So for such a biased coin, 5 head sin a row is not all that unusual. One way to look at this
is that 5 heads in a row is not yet enough to confirm that the coin is double-sided, but it
is probably enough to begin to believe it is not fair.

Summary of this coin example

1. We are told a certain probability of heads.

2. We flip the coin a few times to get data. Count the number of heads.

3. Calculate the probability of getting this number of heads (or more†), under the as-
sumed probability of heads.

4. If our data seems sufficiently rare, reject the initial claimed probability of heads.

† As we will see later, we are not interested in the probability of our specific outcome, but
will be interested in the probability of any outcome that is at least as extreme as ours.
What this means will depend on the context.

2 Terminology and methodology

The null hypothesis is a claim about a population parameter θ.

The test statistic θ̂ is calculated from the assumed null hypothesis and sample data.

The significance level is α, the probability that is our chosen level of “rareness.” The most
common value is α = 5%.

The p-value is the probability of having data at least as extreme or rare as ours.

The rejection region is a region where are test statistic must fall in order to have p < α.
Usually it will be of the form θ∗ such that p < α when θ̂ < θ∗. There are several variations.

We reject the null hypothesis if p < α (or equivalently if θ̂ falls int eh rejection region).

We do not reject the null hypothesis if p ≥ α (or equivalently if θ̂ does not fall in the
rejection region).

Often one can say int eh last case that “we accept the null hypothesis,” but I prefer to
not use this language. It is fine, but technically, we are not using the hypothesis test to
confirm the null hypothesis. The prupose of the test is to check if our data is statistically
significant, which means to check if it is sufficiently extreme so as to call in to question the
veracity of the null hypothesis.

5



3 Hypothesis test for mean µ, Z-test

We have normal data Xi ∼ N(µ, σ2) thus we know the sample mean is normally distributed
Xn ∼ N(µ, σ

2

n
).

If the data are not normal, then the CLT still allows us to assume Xn ∼ N(µ, σ
2

n
) approx-

imately, say if n ≥ 30.

If the data are normal but we do not know the variance σ2, then we know that Xn−µ
σ/
√
n

= t ∼
T (µ, σ

2

n
) for any n. If the data are not normal, we can still use this as a CLT approximation

though.

We want to statistically test a claim about the population mean µ.

3.1 2-sided

Null hypothesis: H0 : µ = µ0

Alternative hypothesis: Ha : µ 6= µ0

Test statistic: z =
x− µ0

σ/
√
n

p-value: p = P (Z ≤ −|z|) + P (Z ≥ |z|) = 2P (Z ≤ −|z|)

In R: p = 2*pnorm(-abs(z))

Note that we take the absolute value here of the test statistic z in order to get the left
sided tail. Then we can just double that probability to get the p-value.

Use this test if we know the variance σ2 and if we know the data is normal. If the data are
not normal we can use this as long as the sample size is large (n ≥ 30 rule of thumb). If
we do not know the variance, we can substitute the sample variance s2 in for σ2 as long as
the sample size is large.

3.2 1-sided

Left side Null hypothesis: H0 : µ ≥ µ0 (often still written as H0 : µ = µ0)
Alternative hypothesis: Ha : µ < µ0

Test statistic: z =
x− µ0

σ/
√
n

p-value: p = P (Z ≤ z)

In R: p = pnorm(z)

Note that we are not using an absolute value here. If z is positive, then our p-value will be
greater than 50%. In this case, our sample data does not support the alternative hypothesis
at all.
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Right side Null hypothesis: H0 : µ ≤ µ0 (often still written as H0 : µ = µ0)
Alternative hypothesis: Ha : µ > µ0

Test statistic: z =
x− µ0

σ/
√
n

p-value: p = P (Z ≥ z) = 1− P (Z < z)

In R: p = pnorm(-z) = 1-pnorm(z)

Note that we are not using an absolute value here, but instead multiply our test statistic
by a minus sign. If z is already negative, then our p-value will be greater than 50%. In
this case, our sample data does not support the alternative hypothesis at all.

4 Hypothesis test for mean µ, T -test

Generally, a T -test is better than a Z-test since we are often working with data that are
not exactly normal, or with smaller sample sizes.

4.1 2-sided

Null hypothesis: H0 : µ = µ0

Alternative hypothesis: Ha : µ 6= µ0

Test statistic: t =
x− µ0

s/
√
n

p-value: p = P (Tn−1 ≤ −|t|) + P (Tn−1 ≥ |t|) = 2P (Tn−1 ≤ −|t|)

In R: p = 2*pt(-abs(t),n-1)

If our data is stored in a list x, then we can do this t-test in R as:

t.test(x,mu=µ0,alternative="two.sided").

For the 2-sided test, we don’t actually need to specify the alternative as it is the default:
t.test(x,mu=µ0).

4.2 1-sided

Left side Null hypothesis: H0 : µ ≥ µ0 (often still written as H0 : µ = µ0)
Alternative hypothesis: Ha : µ < µ0

Test statistic: t =
x− µ0

s/
√
n

p-value: p = P (Tn−1 ≤ t)
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In R: p = pt(t,n-1)

If our data is stored in a list x, then we can do this t-test in R as:

t.test(x,mu=µ0,alternative="less").

Right side Null hypothesis: H0 : µ ≤ µ0 (often still written as H0 : µ = µ0)
Alternative hypothesis: Ha : µ > µ0

Test statistic: t =
x− µ0

s/
√
n

p-value: p = P (Tn−1 ≥ t) = 1− P (Tn−1 < t)

In R: p = pt(-t,n-1) = 1-pt(t,n-1)

If our data is stored in a list x, then we can do this t-test in R as:

t.test(x,mu=µ0,alternative="greater").

5 A note about α

The level of significance α needs to be chosen carefully. As already meantioned, α = 0.05
is most commonly used, but depending on the application and circumstance, you may wish
to set it higher or lower.

Types of errors We do not know with absolute certainty if the null hypothesis is true
or not. If it is true and we reject it, we have made a type I error. If it is false and we fail
to reject it, we have made a type II error. So setting α higher will increase our chances of
making a type I error. Setting it lower will generally increase our chance of making a type
II error.

Consider the example of a construction material that is supposed to withstand a particular
stress or force. H0 : µ ≥ µ0 and Ha : µ < µ0. We may wish to err on the side of caution
and reject an acceptable batch of this material rather than use an unacceptable batch in
a construction application that might put lives in danger. That being said, there is a cost
aspect to consider as well. Rejecting too many materials may increase costs too much,
but accepting materials that eventually fail will also increase costs (due to lawsuits and/or
insurance claims). There is a careful balance to strike which will require a very careful
mathematical analysis that is beyond the scope of this course.

Generally, if you are ok with rejecting a null hypothesis when it is true, but do not want
to accept it when it is false, increase α, say to α = 0.1 (but α < 0.5 is required). If you
only want to reject the null hypothesis when it really is false, then you can lower α, say to
α = 0.01 or even lower.
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6 Hypothesis test for proportion p

Null hypothesis: H0 : p = p0
Alternative hypothesis: Ha : p 6= p0

Test statistic: z =
p̂− p0√

p0(1− p0)/n

And perform the test just as above for mean µ.

7 Hypothesis test for variance σ2

Null hypothesis: H0 : σ2 = σ2
0

Alternative hypothesis: Ha : σ2 6= σ2
0

Test statistic: χ2 =
(n− 1)s2

σ2
0

p-value: p = min{P (χ2
n−1 ≤ χ2), P (χ2

n−1 ≥ χ2)} = min(pchisq(χ2,n-1), 1-pchisq(χ2,n-1)).

If s2 < σ2
0, then p = 2P (χ2

n−1 ≤ χ2) = 2*pchisq(χ2,n-1).

If s2 > σ2
0, then p = 2P (χ2

n−1 ≥ χ2) = 2*(1-pchisq(χ2,n-1)).

7.1 1-sided, less

Null hypothesis: H0 : σ2 = σ2
0

Alternative hypothesis: Ha : σ2 < σ2
0

Test statistic: χ2 =
(n− 1)s2

σ2
0

p = P (χ2
n−1 ≤ χ2) = pchisq(χ2,n-1).

7.2 1-sided, greater

Null hypothesis: H0 : σ2 = σ2
0

Alternative hypothesis: Ha : σ2 > σ2
0

Test statistic: χ2 =
(n− 1)s2

σ2
0

p = P (χ2
n−1 ≥ χ2) = 1-pchisq(χ2,n-1).
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8 Hypothesis test for difference in means µ1 − µ2

Null hypothesis: H0 : µ1 − µ2 = ∆0

Alternative hypothesis: Ha : µ1 − µ2 6= ∆0

Test statistic: t =
(x1 − x2)−∆0√

s21
n1

+
s22
n2

p-value: p = P (Tν ≤ −|t|) + P (Tν ≥ |t|) = 2P (Tν ≤ −|t|)

In R: p = 2*pt(-abs(t),ν)

where the degrees of freedom are

ν =

(
s21
n1

+
s22
n2

)2
s41

n2
1(n1−1) +

s42
n2
2(n2−1)

Round ν down.

If our data is stored in lists x and y, then we can do this t-test in R as:

t.test(x,y,mu=∆0).

8.1 1-sided, less

Null hypothesis: H0 : µ1 − µ2 = ∆0

Alternative hypothesis: Ha : µ1 − µ2 < ∆0

Test statistic: t =
(µ1 − µ2)−∆0√

s21
n1

+
s22
n2

p-value: p = P (Tν ≤ −|t|)

In R: p = pt(-abs(t),ν))

If our data is stored in lists x and y, then we can do this t-test in R as:

t.test(x,y,mu=∆0,alternative="less").

8.2 1-sided, greater

Null hypothesis: H0 : µ1 − µ2 = ∆0

Alternative hypothesis: Ha : µ1 − µ2 > ∆0

Test statistic: t =
(µ1 − µ2)−∆0√

s21
n1

+
s22
n2
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p-value: p = P (Tν ≤ −|t|)

In R: p = pt(-abs(t),ν))

If our data is stored in lists x and y, then we can do this t-test in R as:

t.test(x,y,mu=∆0,alternative="greater").

9 Hypothesis test for difference in proportions p1− p2

Null hypothesis: H0 : p1 − p2 = ∆0

Alternative hypothesis: Ha : p1 − p2 6= ∆0

Test statistic: z =
(p̂1 − p̂2)−∆0√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

p-value: p = P (Z ≤ −|z|) + P (Z ≥ |z|) = 2P (Z ≤ −|z|)

In R: p = 2*pnorm(-abs(z))

This test is only valid if we have sufficiently large samples and enough of both successes
and failures: nip̂i > 5 and ni(1− p̂i) > 5 for i = 1, 1.

This test can also be made 1-sided as well.

If ∆0 = 0, then it is better to use the test statistic:

Test statistic: z =
(p̂1 − p̂2)√

p̂(1− p̂)
(

1
n1

+ 1
n2

)
where the pooled proportion is

p̂ =
n1p̂1 + n2p̂2
n1 + n2

.

10 Chi-squared goodness of fit test

Let’s say that we have a collection of classes and a hypothesized proportion for each class.
For example Mars Corporation claims to manufacture bags of M&Ms with a specific pro-
portion of each color, and we count the number of M&Ms of each color in a certain bag,
then we can test whether or not the claimed proportions fit our specific bag of M&Ms.

Null hypothesis: H0 : the proportion in class i is pi for i = 1, 2, . . . , k
Alternative hypothesis: Ha : at least one of the proportions in incorrect

Test statistic: c =
∑ (observed− expected)2

expected
=

k∑
i=1

(np̂i − npi)2

npi
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p-value: p = P (χ2
k−1 ≥ c) = 1-pchisq(c,df=k-1)

We can perform this test in R by using chisq.test(x,p) where x stores our count data
and p stores the hypothesized proportions.

Example: Suppose it is claimed that a particular population has blood type proportions
given by:

blood type A B AB O
proportion 0.4 0.45 0.1 0.05

Suppose a local medical clinic tests 100 people and finds:

blood type A B AB O
observed counts 43 40 11 6

The expected counts are 40, 45, 10, 5 respectively. The test statistic is

c = (43−40)2
40

+ (40−45)2
45

+ (11−10)2
10

+ (6−5)2
5

= 389
360
≈ 1.08

The p-value is p = 1-pchisq(1.08,3) ≈ 0.78 thus at any significance level below 0.78, we
would not reject the null hypothesis. At the typical level of α = 0.05, we definitely do not
reject H0. Our data is not that unusual under the assumption that the null hypothesis is
true.

In R, we can do this example as:
> x=c(43,40,11,6)

p=c(0.4,0.45,0.1,0.05)

chisq.test(x,p=p)

11 Chi-squared test for independence

If we have a table of counts for two categorical classifications, then it is called a two-way
table. Each individual is classified by two factors, such as smoking vs non-smoking and
age, or income level and education level. If we have a proposed proportion breakdown for
each combination of these two classification factors, then we can perform a chi-squared
hypothesis test to see if the proposed proportions match the data, but we can also test for
independence of the two factors. For example, we might like to investigate if income and
education are independent in the probabilistic/statistical sense. We might expect that those
with higher education level generally have higher income level for instance. If income and
education are independent, then we would expect that, for example, that the probability
that {a person has income level x AND education level y} is the product of the probability
that {a person has income level x} with the probability that {a person has education level
y}.

Suppose we have two factors A and B. Let factor A be broken down into categories
A1, A2, . . . , Am and factor B into categories B1, B2, . . . , Bk. Each individual will be classi-
fied according to which A and B categories they are in. A two-way table contains counts Xij

for how many individuals fall into categories Ai and Bj for i = 1, 2, ...,m and j = 1, 2, ..., k
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so that there are a total of mk cells. There are

N =
m∑
i=1

k∑
j=1

Xij

total individuals represented in the entire table, Ri =
∑k

j=1Xij total individuals in row i,

and Cj =
∑m

i=1Xij total individuals in column j. Note that
∑m

i=1Ri =
∑k

j=1Cj = N .

B1 B2 · · · Bk row totals
A1 X11 X12 · · · X1k R1

A2 X21 X22 · · · X2k R2

...
...

...
. . .

...
...

Am Xm1 Xm2 · · · Xmk Rm

col. totals C1 C2 · · · Ck N

Table 1: Two-way table with factors A and B with total number of categorical classes
being k and m respectively. Xij is the count of individuals falling in category Ai and Bj.

If we think of randomly selecting someone from the table, then there is a probability Xij/N
that they will fall in categories Ai and Bj, a probability of Ri/N that they will fall in row
i, and a probability of Cj/N that they will fall in column j. If categories Ai and Bj

are independent, then we should have Xij/N = Ri/N · Cj/N . If factors A and B are
independent, we would require this to be true for every possible pairing of categories. Of
course with random variability, even if the two factors are actually independent, the actual
data will not indicate this perfectly. We are interested in testing whether our data departs
significantly from the claim of independence.

This test is nearly identical to the chi-squared test already discussed. The only difference
is that we are not given a specific claimed set of proportions, but instead we construct
the expected proportions that we would see under independence. We do this by assuming
the row and column totals are accurate and use those to construct our expected counts by
assuming the factors are independent. The expected count in cell i, j is given by

eij = N · Ri

N
· Cj
N
.

The observed counts are the xij, our given data.

The test statistic is c∗ =
∑m

i=1

∑k
j=1

(xij−eij)2
eij

, and if this test statistics is too extreme,

we will reject the hypothesis of independence. This test statistic approximately follows a
chi-squared distribution with (m − 1)(k − 1) degrees of freedom. The aprpoximation will
be better when the all of the counts are large.

Null hypothesis: H0 : the factors A and B are independent.
Alternative hypothesis: Ha : The factors A and B are not independent.

Test statistic: c =
∑ (observed− expected)2

expected
=

m∑
i=1

k∑
j=1

(xij − eij)2

eij
=

m∑
i=1

k∑
j=1

(xij − ricj/N)2

ricj/N
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p-value: p = P (χ2
mk−1 ≥ c) = 1-pchisq(c,df=(m-1)*(k-1))

We can perform this test in R by using chisq.test(x) where x stores our count data
stored as a table or matrix.

Example: Consider the following table of data on exercise (Frequently, none, some) and
smoking status (heavy, never, occasionally, regularly).

Freq None Some
Heavy 7 1 3
Never 87 18 84
Occas 12 3 4
Regul 9 1 7

We can test for independence between smoking status and exercise frequency in R as follows:

> x=matrix(c(7,87,12,9,1,18,3,1,3,84,4,7),4,3)

chisq.test(x)

*Note that the data table is entered column-by-column and then the dimensions of the
table are specified.

The p-value is 0.4828 for this example, and thus we cannot reject the null hypothesis of
independence of smoking and exercise behavior. Note that the counts in the data table do
not match up perfectly with the assumption of independence, i.e. that xij 6= ricj/N , but
they are fairly close. Random variation is enough to explain the deviation from perfect
independence. This could be caused by sampling error or any other source of uncertainty.
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12 Summary

R commands:

mean(x)+c(-1,1)*qnorm(1-a/2)*sd(x)/sqrt(n)

Notation and formulas:

reject H0 is p ≤ α otherwise do not reject H0.

pay attention to whether the test is 2-sided, or 1-sided, and on which side it is.

z =
x− µ0

σ/
√
n

tn−1 t =
x− µ

s√
n

z =
p̂− p0√

p0(1− p0)/n

tν t =
(x1 − x2)−∆0√

s21
n1

+
s22
n2

ν =

(
s21
n1

+
s22
n2

)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

χ2
k−1 c =

k∑
i=1

(xi − npi)2

npi
=
∑ (observed− expected)2

expected

χ2
(m−1)(k−1) c =

m∑
i=1

k∑
j=1

(xij −Npij)2

Npij
=
∑ (observed− expected)2

expected
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