## additional practice for chapter 5 , confidence intervals

1. If we flip a fair coin 1000 times, find a $95 \%$ prediction interval for the number of heads. If we do not know the coin is fair, but get 61 heads, find a $95 \%$ confidence interval for the true probability of heads.

## Solution:

For the prediction interval, we can either use the binomial of CLT normal approximation. qbinom (c $(0.025,0.975)$, size $=1000$, prob=0.5) gives $(469,531)$ for our predicted number of heads. The CLT approximation that the number of heads is $X \sim N\left(\mu=n p, \sigma^{2}=n p(1-p)\right)$ gives qnorm(c ( $0.025,0.975$ ), mean=500,sd=sqrt (1000*0.5*0.5)) for the CI (469.0102, 530.9898).
2. Consider that a group of 30 people is randomly chosen from of a certain demographic category. The mean heigth is found to be 5 foot 8 inches and the sample standard deviation is found to be 2 inches. Estimate the true mean height of this demographic category with a $95 \%$ CI.

## Solution:

We can use the normal approximation from the CLT since the sample size is reasonably large. Height data is also known to be very nearly normally distributed as well. $\bar{x} \pm z_{0.975} \frac{2}{\sqrt{30}}$ substituting in our data $5.67 \pm 1.96 \cdot \frac{2}{12 \sqrt{30}}$ gives a CI of $5.67 \pm 0.06 \mathrm{ft}$. Thus we think the true mean height is likely between 5 ft 7 in and 5 ft 9 in .
3. An internet server has data requests arrive at a very high rate. The number of data requests in a minute is collected for 60 randomly chosen 1 minute intervals. The mean requests per minute is found to be 982 . Construct a $95 \%$ CI for true mean number of requests per minute. Model the number of requests in a 1 minute period by a Poisson random variable.

## Solution:

Let $X$ be the number of requests in a minute. We are modeling this as Poisson, so $X \sim \operatorname{Pois}(\lambda)$. We wish to estimate $\lambda$ with a $95 \%$ CI. Our sample size is 60 with a sample mean of $\bar{x}=982$. Each data point $x_{i}$ is a random draw from a Poisson distribution whose mean and variance are both equivalent to $\lambda$, thus by the CLT $\bar{X} \sim N\left(\mu=\lambda, \sigma^{2}=\lambda / n\right)$. Thus a $95 \%$ CI for $\mu$ is $\bar{x} \pm z_{0.975} \sqrt{\frac{\lambda}{n}}$. We don't know $\lambda$ so we will substitute our sample mean for it in the CI formula.
$982 \pm z_{0.975} \sqrt{\frac{982}{60}}$ gives $(972,990)$.
Even if we wanted to be very conservative and use a much larger standard error, say $\sqrt{\frac{2000}{60}}$ and $z_{0.975} \approx 2$ instead of $\sqrt{\frac{982}{60}}$ and $z_{0.975} \approx 1.96$ then our $95 \%$ CI would be $(970,994)$ which is not very different.
4. Polling data of 3,000 likely voters in Florida found Trump and Biden tied at $47 \%$ each with $6 \%$ indicating other candidates. Assuming that Biden and Trump are running against each other in 2020, estimate the actual 2020 vote result for Florida with a $95 \%$ confidence interval.

## Solution:

We can use the rule of thumb $95 \%$ CI formula for a proportion as $\hat{p}+ \pm \frac{1}{\sqrt{n}}$ to get a margin of error that is $\frac{1}{\sqrt{3000}} \approx 0.018$. This is identical to the margin of error reported by the poll!
The $95 \%$ CI's for Trump and Biden are both $0.47 \pm 0.018$. This could mean either or both Trump's and Biden's vote count are reduced or increased by $1.8 \%$ with other candidates vote counts changing accordingly to make up for the difference.
Note that there are many potential sources for error in such polls, and that a significant number of voters can even change their minds multiple times about who to vote for and even whether or not to vote at all!
5. A consumer preference survey randomly sampled 50 people from county A and 75 people from county B. Thirty one people from county A indicated that they preferred product I over product II, and 52 people from county B indicated a preference for I over II. Estimate the difference in proportions between the preference for product I between the two counties with a $95 \%$ CI. Estimate the true proportion in county B who prefer product I with a $95 \%$ CI as well.

## Solution:

$\hat{p}_{1}-\hat{p}_{2} \pm z_{1-\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
$0.62-0.693 \pm 1.96 \sqrt{\frac{0.62(0.38)}{50}+\frac{0.693(0.307)}{75}}$ gives $(-0.243,0.097)$ so we cannot really be too certain if county B residents have a stronger preference for product I.
For county B the $95 \%$ CI for the proportion that prefer product I is $0.693 \pm \frac{1}{\sqrt{75}}=(0.58,0.81)$ using the simpler rule-of-thumb formula. If we use the CI formula more precisely, we get $0.693 \pm$ $1.96 \sqrt{\frac{(0.693)(0.307)}{75}}=(0.589,0.797)$.

