$1.8 \quad n^{r}$ and $12^{3}=1,728$
$1.9\binom{r+n-1}{r}$ and $\binom{5+3-1}{5}=\binom{7}{5}=21$
1.10 Substitute $r-n$ for r into result of 1.9

$$
\binom{r-n+n-1}{r-n}=\binom{r-1}{r-n} \text { and }\binom{5-1}{5-3}=\binom{4}{2}=6
$$

1.14 (a) Set $x=1$ and $y=1$
(b) Set $x=1$ and $y=-1$
(c) Set $x=1$ and $y=\boldsymbol{a}-1$
1.27 (a) 5
(b) 4
1.31 (a) 6;
(b) $6 \cdot 5=30$;
(c) $5 \cdot 4=20$ first one fixed;
(d) $6+30+20=56$
1.37 (a) $\frac{14 \cdot 13}{2 \cdot 1}=91$; (b) $\quad \frac{14 \cdot 13 \cdot 12}{3 \cdot 2 \cdot 1}=364$
$1.417!=5040$
1.42 (a) $\quad 5!=120 ; \quad$ (b) $\quad \frac{5!}{2!}=60$
$1.52 \quad 3^{10}=59,049$
$1.54\binom{12+6-1}{12}=\binom{17}{12}=\binom{17}{5}=6,188$

