Chapter 3 Summary and Review (draft: 2019/10/02-02:25:54)

Random Variables

Summary of topics and terminology:

- Given sample space S, a (real-valued) random variable is a function $X: S \rightarrow \mathbb{R}$.
- Be able to calculate probabilities for both discrete and continuous random variables.
- A random variable is called discrete if it takes on a finite or countable number of values. E.g. $X \in\{1,2,3,4,5,6\}$ or $X \in \mathbb{Z}$.
- A random variable is called continuous if it takes values in an interval, e.g. $X \in[0,1]$ or $X \in(0, \infty)$.

Example problems:

1. Flip a fair coin 3 times, let X be the number of heads minus the number of tails. Find $P(|X|=1)$.
Solution: $X= \pm 1$ means that we have 2 H's and 1 T or vice versa. There are 3 ways to get each: $2 \mathrm{H}-1 \mathrm{~T}$: HHT, HTH, THH, or $1 \mathrm{H}-2 \mathrm{~T}$: HTT, THT, TTH. There are a total of $2^{3}=8$ equally likely outcomes, thus $P(|X|=1)=6 / 8$.
2. Consider a bag with 4 red balls and 3 blue balls. Draw 5 w/o replacement. Let X be the number of blue balls drawn. Find all possible values for X and the probabilities of each (the pmf).
Solution:
$P(X=x)=\frac{\binom{4}{5-x}\binom{3}{x}}{\binom{7}{5}}$ for $x=1,2,3$.
Carefully think about the allowable values of X. there must be at least 1 blue ball drawn wince we are drawing 5 and there are only 4 red balls. Of course, we cannot draw more than 3 blue balls.

Let's check the law of total probability: we want $P(X=1)+P(X=2)+P(X=3)=1$.
$\frac{\binom{4}{4}\binom{3}{1}}{\binom{7}{5}}+\frac{\binom{4}{3}\binom{3}{2}}{\binom{7}{5}}+\frac{\binom{4}{2}\binom{3}{3}}{\binom{7}{5}}=\frac{1}{7}+\frac{4}{7}+\frac{2}{7}=1$
3. Consider the experiment where we flip a fair coin until we get a head. Let X be teh total number of flips. Is this a random variable? What are the probabilities for its values?

Solution:

$P(X=k)=1 / 2^{k}$ for $k=1,2,3, \ldots$.
There is at least 1 flip ($k=1$), but we can't limit it to a maximum finite number of flips. But the probability decays exponentially ast eh number of flips gets very large. We are unlikely to get a large number of tails without any heads!
Let's check the law of total probability: $\sum_{k=1}^{\infty} 1 / 2^{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=1$. This is a geometric series. (*typo fixed)

Univariate probability functions

Summary of topics and terminology:

- $\mathrm{pmf}=$ probability mass function (gives probability directly), $f(x)=P(X=x)$
- pdf $=$ probability density function (integrate to get probability), $f(x)=\frac{d}{d x} P(X \leq x)$.
- cdf $=$ cumulative distribution function $F(x)=P(X \leq x)$.
- $f(x)=F^{\prime}(x)$ for continuous RV
- for discrete RV, cdf is a step function, height of step gives probability mass for value where step up occurs
- $P(X=x)=0$ for continuous RV
- $P(a<X<b)=\int_{a}^{b} f(x) d x$ for a continous RV. The inequalities can be any combination of strict or not. This is not true for a discrete random variable.
- $P(a<X \leq b)=F(b)-F(a)$ for a discrete random variable. The inequalities must be exactly as is here otherwise care must be taken.
- "Uniformly distributed" means the pmf or pdf is a constant function. E.g. $f(x)=1 /(b-a)$ is $X \sim U[a, b]$ (continuous), and $f(x)=1 / n$ for $X \sim U\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ (discrete).

Example problems:

1. Consider pmf $f(x)=x / 6$ for $x=1,2,3$. Write the formula for the cdf.

Solution:
$F(x)= \begin{cases}0 & \text { if } x<1 \\ 1 / 6 & \text { if } 1 \leq x<2 \\ 3 / 6 & \text { if } 2 \leq x<3 \\ 1 & \text { if } x \geq 3\end{cases}$
2. Consider cdf given below. Find $P(2 \leq X<5)$.

$$
F(x)= \begin{cases}0 & \text { if } x<1 \\ 0.05 & \text { if } 1 \leq x<2 \\ 0.12 & \text { if } 2 \leq x<3 \\ 0.3 & \text { if } 3 \leq x<4 \\ 0.4 & \text { if } 4 \leq x<5 \\ 0.73 & \text { if } 5 \leq x<6 \\ 0.92 & \text { if } 6 \leq x<7 \\ 1 & \text { if } x \geq 7\end{cases}
$$

Solution:

$P(2 \leq X<5)=P(1<X \leq 4)=F(4)-F(1)=0.4-0.05=0.35 \quad$ (* typo fixed here)
For discrete random variables, you need to pay careful attention to which values are actually included.
edit: Here are a few variations on the inequalities:
$P(2 \leq X \leq 5)=P(1<X \leq 5)=F(5)-F(1)=0.73-0.05=0.68$
$P(2<X<5)=P(2<X \leq 4)=F(4)-F(2)=0.4-0.12=0.28$
$P(2<X \leq 5)=F(5)-F(2)=0.73-0.12=0.61$
3. Given $\operatorname{cdf} F(x)=1-\frac{1}{x^{2}}$ for $x>0$, find the pdf.

Solution:
$f(x)=F^{\prime}(x)=\frac{2}{x^{3}} . \quad(*$ typo fixed $)$
4. Given pdf $f(x)=1 / 2$ on $[1,2)$ and $f(x)=3-x$ on $[2,3]$, find the cdf.

Solution:
$F(x)=0$ if $x<1$.
$F(x)=P(X \leq x)=\int_{1}^{x} 1 / 2 d x=(x-1) / 2$ if $x \in[1,2)$
$F(x)=1 / 2+\int_{2}^{x}(3-x) d x=3(x-2)-\frac{1}{2}\left(x^{2}-4\right)=-\frac{1}{2}(x-3)^{2}+1$ if $x \in[2,3]$
$F(x)=1$ for $x>3$.

Multivariate probability functions

Summary of topics and terminology:

- Joint cdf 2 variables: $F(x, y)=P(X \leq x, Y \leq y)$. Note that this is an *and* statement, or the probability of the intersection of events $\{X \leq x\}$ and $\{Y \leq y\}$.
- Joint cdf for n variables: $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(\bigcap_{i=1}^{n}\left\{X_{i} \leq x_{i}\right\}\right)$.
- Joint pdf 2 variables: $f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)$
- Joint pdf n variables: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\partial^{n}}{\partial x_{1} \partial x_{2} \cdots \partial x_{n}} F(x, y)$
- $F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(t, s) d t d s$, but be careful that $f(x, y)$ might be zero in some places. More generally, this works for any number of variables, we just have as many integrals as there are variables.
- Joint cdf for discrete $F(x, y)=\sum_{s \leq y} \sum_{t \leq x} f(t, s)$, again be careful that $f(x, y)$ might be zero in some places. We can think of it like this : $F(x, y)=\sum_{\{(t, s): t \leq x, s \leq y\}} f(t, s)$.
- Marginal pdf for $X: f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) d y$. In book stated as $g(x)=\int_{-\infty}^{\infty} f(x, y) d y$.
- Marginal pdf for $Y: f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x$. In book stated as $h(y)=\int_{-\infty}^{\infty} f(x, y) d x$.
- Conditional pdf of X given a fixed Y value: $f_{X \mid Y=y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$. In our textbook it is stated as $f(x \mid y)=\frac{f(x, y)}{h(y)}$. It is required that the denominator be nonzero.
- Conditional pdf for Y given a fixed X value: $f_{Y \mid X=x}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$. In the textbook this is stated as $w(y \mid x)=\frac{f(x, y)}{g(x)}$. It is required that the denominator be nonzero.
- For joint pdf $f(x, y, z)$ the marginal pdf for X is given by $f_{X}(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y, z) d y d z$. We are integrating out both Y and Z. Other individual marginal pdfs can be calculated similarly.
- For joint pdf $f(x, y, z)$ the marginal joint pdf for X and Y is given by $f_{X, Y}(x, y)=$ $\int_{\mathbb{R}} f(x, y, z) d z$. We are just integrating out Z. Other individual marginal pdfs can be calculated similarly.
- For joint pdf $f(x, y, z)$ the joint conditional pdf for X and Y given $Z=z$ is given by $f_{X, Y \mid Z=z}(x, y \mid z)=\frac{f(x, y, z)}{f_{Z}(z)}$.
- For joint pdf $f(x, y, z)$ the joint conditional pdf for X given $Y=y$ and $Z=z$ is given by $f_{X \mid Y=y, Z=z}(x \mid y, z)=\frac{f(x, y, z)}{f_{Y, Z}(y, z)}$.

Example problems:

1. Consider the experiment where 3 balls are randomly drawn without replacement out of an urn containing 4 red, 5 green, and 2 blue balls. Let X be the number of red balls and Y be the number of blue balls that are included in those drawn out. Write the joint pmf for X and Y. Find the marginal pmf of X. And find the conditional pmf for Y given that $X=1$.

Solution:

Joint pmf:

$$
f_{X, Y}(x, y)=\frac{\binom{4}{x}\binom{5}{3-x-y}\binom{2}{y}}{\binom{11}{3}}
$$

There is a domain restriction though since we require $1 \leq x+y \leq 3$
Marginal pmf for $X: f_{X}(x)=f_{X, Y}(x, 0)+f_{X, Y}(x, 1)+f_{X, Y}(x, 2)=\frac{\binom{4}{x}\binom{5}{3}\binom{2}{0}}{\binom{11}{3}}+\frac{\binom{4}{x}\binom{5}{2}\binom{2}{1}}{\binom{11}{3}}+$ $\frac{\binom{4}{x}\binom{5}{1-x}\binom{2}{2}}{\binom{11}{3}}$ for $x=0,1,2,3$
Conditional pmf

$$
\begin{aligned}
f_{Y \mid X=1}(y \mid 1) & =\frac{f_{X, Y}(1, y)}{f_{X}(1)} \\
& =\frac{\frac{\binom{4}{1}\left(\begin{array}{c}
5-1-y
\end{array}\right)\binom{2}{y}}{\binom{11}{3}}}{\frac{\binom{4}{1}\binom{5}{5}\binom{2}{0}}{\binom{11}{3}}+\frac{\binom{4}{1}\left(\begin{array}{l}
5-1
\end{array}\right)\binom{2}{1}}{\binom{11}{3}}+\frac{\binom{4}{x}\binom{5}{1-1}\binom{2}{2}}{\binom{11}{3}}} \\
& =\frac{4\binom{5}{2-y}\binom{2}{y}}{4\binom{5}{2}\binom{2}{0}+4\binom{5}{1}\binom{2}{1}+4\binom{5}{0}\binom{2}{2}} \\
& =\frac{\binom{5}{2-y}\binom{2}{y}}{\binom{5}{2}\binom{2}{0}+\binom{5}{1}\binom{2}{1}+\binom{5}{0}\binom{2}{2}} \\
& =\frac{\binom{5}{2-y}\binom{2}{y}}{10+10+1}
\end{aligned}
$$

for $y=0,1,2$. We can check this by plugging in these y-values and adding the resulting conditional probabilities to make sure they sum to 1 .
This problem may be more easily understood writing out eh join pmf in tabular format:

		X				
		0	1	2	3	total
Y	0	$10 / 165$	$40 / 165$	$30 / 165$	$4 / 165$	$84 / 165$
	1	$20 / 165$	$40 / 165$	$12 / 165$	0	$72 / 165$
	2	$5 / 165$	$4 / 165$	0	0	$9 / 165$
	total	$35 / 165$	$84 / 165$	$42 / 165$	$4 / 165$	1

If we look at the column $X=1$ then the probabilities for each Y value are 40/165, 40/165, 4/165 but we need to normalize these by dividing by their sum and this gives probabilities $40 / 84,40 / 84,4 / 84$. These simplify to $10 / 21,10 / 21,1 / 21$ for $y=0,1,2$. This is the conditional pmf for Y given that $X=1$.
The marginal pmf for X are the column totals $35 / 165,84 / 165,42 / 165,4 / 165$ for $X=$ $0,1,2,3$.
2. Find the constant k and find the joint cdf for joint pdf given by $f(x, y)=\frac{1}{k}\left(3 x^{2}+2 y\right)$ on $[0,1] \times[0,2]$.

Solution:

We require $\int f(x, y) d A=1$ and calculate $\int_{0}^{1} \int_{0}^{2} \frac{1}{k}\left(3 x^{2}+2 y\right) d y d x=\int_{0}^{1}\left[\frac{1}{k}\left(3 x^{2} y+y^{2}\right)\right]_{0}^{2} d x=$ $\int_{0}^{1} \frac{1}{k}\left(6 x^{2}+4\right) d x=\left.\frac{1}{k}\left(2 x^{3}+4 x\right)\right|_{0} ^{1}=\frac{6}{k}$ so $k=6$.
To find the cdf, we integrate over several different regions carefully. If x or y are below their allowable ranges, the cdf is zero: $F(x, y)=0$ if $x<0$ or $y<0$. When both x and y are within their allowable ranges we integrate: $F(x, y)=\int_{0}^{y} \int_{0}^{x} \frac{1}{6}\left(3 t^{2}+2 s\right) d t d s=$ $\frac{1}{6}\left(x^{3} y+x y^{2}\right)$ when $x \in[0,1]$ and $y \in[0,2]$. Now when $y>2$, we must stop the y integral at $y=2$ since the pdf is zero beyond that. Similarly, we stop integrating if the x value goes beyond 1 since the pdf is zero beyond that. For $x \in[0,1]$ and $y>2$ we have $F(x, y)=\int_{0}^{2} \int_{0}^{x} \frac{1}{6}\left(3 t^{2}+2 s\right) d t d s=\frac{1}{6}\left(2 x^{3}+4 x\right)$. For $x>1$ and $y \in[0,2]$ we have that $F(x, y)=\int_{0}^{y} \int_{0}^{1} \frac{1}{6}\left(3 t^{2}+2 s\right) d t d s=\frac{1}{6}\left(y+y^{2}\right)$. We summarize this as

$$
F(x, y)= \begin{cases}0 & \text { if } x<0 \text { or } y<0 \\ \frac{1}{6}\left(x^{3} y+x y^{2}\right) & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 2 \\ \frac{1}{6}\left(2 x^{3}+4 x\right) & \text { if } 0 \leq x \leq 1 \text { and } y>2 \\ \frac{1}{6}\left(y+y^{2}\right) & \text { if } x>1 \text { and } 0 \leq y \leq 2\end{cases}
$$

See https://www.math3d.org/PFgHn18m for a 3D plot of this cdf.
3. Continuing the previous problem, find
(a) $P(X<0.5, Y>1)$
(b) $P(X+Y<1)$

Solution:

(a) $P(X<0.5, Y>1)=\int_{0}^{0.5} \int_{1}^{2} f(x, y) d y d x=\frac{1}{6}\left(\left.x^{3}\right|_{0} ^{0.5}(2-1)+\left.y^{2}\right|_{1} ^{2}\right)=\frac{17}{48}$
(b) (*typo fixed)

$$
\begin{aligned}
P(X+Y<1) & =P(X<1-Y) \\
& =\frac{1}{6} \int_{0}^{1} \int_{0}^{1-y} f(x, y) d x d y \\
& =\frac{1}{6} \int_{0}^{1}\left[x^{3}+2 y x\right]_{0}^{1-y} d y \\
& =\frac{1}{6} \int_{0}^{1}(1-y)^{3}+2 y(1-y) d y \\
& =\frac{1}{6}\left(-\frac{1}{4}(1-y)^{4}+y^{2}-\left.\frac{2}{3} y^{3}\right|_{0} ^{1}\right) \\
& =\frac{1}{6}\left(\frac{1}{4}+1-\frac{2}{3}\right)=\frac{7}{72}
\end{aligned}
$$

Note that the y-limits stop at 1 since $X<1-Y$ is no longer possible if $Y>1$. This is easier to see by graping the region.
4. Continuing the previous problem again, find the marginal pdfs for X and for Y, and find the conditional pdfs for X given $Y=1$ and for Y given $X=0.5$.

Solution:

We have joint pdf $f(x, y)=\frac{1}{6}\left(3 x^{2}+2 y\right)$ on $[0,1] \times[0,2]$. We integrate out each variable individually to get the marginal distributions first:
$f_{X}(x)=\int_{0}^{2} f(x, y) d y=\left.\frac{1}{6}\left(3 x^{2} y+y^{2}\right)\right|_{0} ^{2}=\frac{1}{6}\left(6 x^{2}+4\right)$ for $x \in[0,1]$
$f_{Y}(y)=\int_{0}^{1} f(x, y) d x=\left.\frac{1}{6}\left(x^{3}+2 x y\right)\right|_{0} ^{1}=\frac{1}{6}(1+2 y)$ for $y \in[0,2]$.
It is important to realize that these marginal pdfs are defined as zero outside of the domains given.
The conditional pdfs are:
$f_{X \mid Y=y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{3 x^{2}+2 y}{1+2 y}$ for any *fixed* y-value in $[0,2]$.
Thus $f_{X \mid Y=1}(x \mid 1)=\frac{1}{3}\left(3 x^{2}+2\right)$.
$f_{Y \mid X=x}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{3 x^{2}+2 y}{6 x^{2}+4}$ for any *fixed* x-value in $[0,1]$.
Thus $f_{Y \mid X=0.5}(y \mid 0.5)=\frac{2}{11}\left(\frac{3}{4}+2 y\right)$.
Note: you should check that the integrals of these conditional pdfs over their respective domains satisfies the law of total probability.
5. Consider joint pdf $f_{X, Y, Z}(x, y, z)=\frac{1}{14}\left(x^{2} y+y^{2} z\right)$ on $[0,1] \times[0,2] \times[0,3]$. Find the marginal pdfs $f_{X, Y}(x, y)$ and $f_{Z}(z)$. Find the conditional pdfs $f_{X, Y \mid Z=z}(x, y \mid z)$ and $f_{Z \mid X=x, Y=y}(z \mid x, y)$.

Solution:

$f_{X, Y}(x, y)=\int_{0}^{3} \frac{1}{14}\left(x^{2} y+y^{2} z\right) d z=\frac{1}{14}\left(3 x^{2} y+\frac{9}{2} y^{2}\right)$
$f_{Z}(z)=\int_{0}^{2} \int_{0}^{1} \frac{1}{14}\left(x^{2} y+y^{2} z\right) d x d y=\frac{1}{21}(1+4 z)$
$f_{X, Y \mid Z=z}(x, y \mid z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Z}(z)}=\frac{\frac{1}{14}\left(x^{2} y+y^{2} z\right)}{\frac{1}{21}(1+4 z)}=\frac{3}{2} \frac{x^{2} y+y^{2} z}{1+4 z}$ (for a fixed value of z) (*typo
fixed) here is a3D plot of the pdf with the plane cutting part of it off:
https://www.math3d.org/yWyxL6HP
You can visualize that the small triangular wedge that is cut off is fairly close to $1 / 10$ the total volume.
$f_{Z \mid X=x, Y=y}(z \mid x, y)=\frac{f_{X, Y, Z}(x, y, z)}{f_{X, Y}(x, y)}=\frac{\frac{1}{14}\left(x^{2} y+y^{2} z\right)}{\frac{1}{14}\left(3 x^{2} y+\frac{9}{2} y^{2}\right)}=\frac{x^{2} y+y^{2} z}{3 x^{2} y+\frac{9}{2} y^{2}}$. (For fixed values of x and y.)
For example, if we wanted to find the conditional distribution of Z given $X=\frac{1}{\sqrt{3}}$ and $Y=2$, then $f_{Z \mid X=\sqrt{3}, Y=2}(z \mid \sqrt{3}, 2)=\frac{1}{10}\left(\frac{1}{3}+2 z\right)$.

