
Chapter 5 Summary and Review (draft: 2019/11/10-15:47:08)

Bernoulli, binomial, geometric, negative binomial

Summary of topics and terminology:

• Bernoulli: X ∼ Bernoulli(θ). Represents an simple random experiment with two possible
outcomes. X = 1 is a success with probability θ, and X = 0 is a failure with probability
1− θ.

à fX(x) = θx(1− θ)1−x. pmf, discrete, x = 0, 1.

à E(X) = θ

à Var(X) = θ(1− θ)

• Binomial: X ∼ Bin(n, θ) is the number of successes in n independent Bernoulli trials with
probability of success θ.

à fX(x) =
(
n
x

)
θx(1− θ)n−x. pmf, discrete, x = 0, 1, 2, . . . , n.

à E(X) = nθ

à Var(X) = nθ(1− θ)

• Geometric: X ∼ Geom(θ) is the number of trials up to and including the first success

à fX(x) = θ(1− θ)x−1. pmf, discrete, x = 1, 2, 3, . . .

à E(X) = 1
θ

à Var(X) = 1−θ
θ2

• Negative binomial: X ∼ NB(k, θ) is the number of trials to get k total successes

à fX(x) =
(
x−1
k−1
)
θk(1− θ)x−k. pmf, discrete, x = k, k + 1, k + 2, . . ..

à E(X) = k
θ

à Var(X) = k(1−θ)
θ2

Example problems:

1. Calculate the probability of getting 4 heads when flipping a fair coin ten times.

Solution:

X =number of heads out of 10 flips, X ∼ Bin(n = 10, θ = 0.5).

P (X = 4) = fX(4) =
(
10
4

)
(0.5)4(1− 0.5)6 = 10·9·8·7

4·3·2·210 ≈ 0.2050781

2. If a factory is producing items with a probability of an item being defective is 1%, how
many items are expected to be produced before the first defective item?

Solution:

X = the number of items produced up to and including the first defective one.

X ∼ Geom(θ = 0.01). E(X) = 1/θ = 100. So we expect 100 items to be produced, where
the first 99 are good and the 100th is defective.

*note that in R the Geometric RV is defined differently, it counts the number of failures
instead of the total number of trials.
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3. A consumer satisfaction researcher needs to recruit 10 individuals with a particular pref-
erence for a particular study. It is known that 27% of the general population has the
particular preference of interest. The researcher is to conduct random phone calls until the
10 individuals are found. What is the probability that this takes less than 20 phone calls?

Solution:

Let X = the total number of phone calls required to get the desired 10 individuals

X ∼ NB(k = 10, θ = 0.27).

P (X < 20) =
∑19

x=10

(
x−1
9

)
(0.27)10(0.73)x−10 ≈ 0.01561759

*note that in R the Negative binomial RV is defined differently, it counts the number of fail-
ures instead of the total number of trials. So for this problem it is pnbinom(9,size=10,prob=0.27).

4. Challenge: Consider an experiment where Bernoulli trials are performed until the first
success. The total number of trials is noted and then the same number of trials is performed
again. The total number of successes is then counted after this second stage. What is the
expected number of successes? (note: this is a challenging problem, but try it and see what
you think.)

Solution:

Let X ∼ Geom(θ) and Y ∼ Binom(n = X, θ).

X represents the total number of trials to be performed during the first stage. Y represents
the number of successes in the second stage. Note that the total number of trials performed
during the second stage depends on the outcome of the first stage. So we cannot know
exactly how many trials to perform until completing the first stage and getting and X
value.

We know that for a binomial random variable, the expected value is nθ. Since Y is binomial
with n = X trials, we can calculate a conditional expectation: E(Y | X = x) = xθ.

Now we sum over all possible x-values and multiply by their probabilities:
E(Y ) =

∑∞
x=1 E(Y | X = x) · P (X = x) = θ

∑∞
x=1 xP (X = x) = θE(X) = 1.

Another way to conceptualize this is to realize E(Y | X) = Xθ is a random variable if we
leave X undetermined, and then we get E(Y ) = E[E(Y | X)] = E[Xθ] = E(X) ·θ = 1

θ ·θ = 1.

Another possible approach would be to write the joint pmf for X,Y as

f(x, y) = fY |X=x(y|x) · fX(x) =

(
x

y

)
θy(1− θ)x−y · θ(1− θ)x−1

And calculate

E(Y ) =
∞∑
x=1

x∑
y=0

y

(
x

y

)
θy(1− θ)x−y · θ(1− θ)x−1

=
∞∑
x=1

xθ · θ(1− θ)x−1

= θ

∞∑
x=1

xθ(1− θ)x−1

= θE(X) = 1
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Poisson

Summary of topics and terminology:

• The Poisson random variable is for counting how many events occur over a given physical
extent. This could be number of events over a given interval of time, length, or even area
of volume. Many different examples exist.

• X ∼ Pois(λ)

à fX(x) = e−λλx

x! . pmf, discrete, x = 0, 1, 2, 3, . . ..

à E(X) = λ

à Var(X) = λ

• λ can be called the rate parameter. It is the number of events per given unit of physical
extent. But we have to be careful as to what the base unit of physical extent is.

• Scaling the Poisson parameter: if X ∼ Pois(λ) where λ is the number of events to expect
over a given physical extent, then if we scale the size of that physical extent by a factor of
t, then Y the number of events over this new scaled physical extent is Y ∼ Pois(λt). I.e.
that E(X) = λ but E(Y ) = λt.

• Poisson approximation to binomial: X ∼ Bin(n, θ) when n is large enough, then n(x;n, θ) ≈
p(x, λ = nθ).

Example problems:

1. A textile manufacturer makes fabric with on average 1 imperfection for every 20 square
meters. A particular customer places an order to 100 square meters. What is the ex-
pected number of imperfections? What is the probability of no imperfections? What is the
probability of at least 3 imperfections?

Solution:

The rate of imperfection events is 1 per 20m2 there are 5 such regions in 100 m2 so we
expect 5 imperfections. Thus we will use λ = 5. X ∼ Pois(λ = 5).

The probability of zero imperfections is e−λ = e−5 which is a very tiny probability!

The probability of at least 3 imperfections is
P (X ≥ 3) = e−5

∑∞
x=3

5x

x! = e−5(e5 − 1− 5− 52

2 ) ≈ 0.875348

We can calculate this in R as 1-ppois(2,lambda=5).

2. Suppose a biologist is taking lake water samples and testing for presence of a particular
microbe. If we assume the microbe population is large and uniformly distributed throughout
the lake, then it can be modeled well by a Poisson. The biologist takes a 1 milliliter sample
and estimates that there are 5 microbes in the sample. Calculate the probability that there
are more than 5,100 microbes in a 1L sample.

Solution:

The number of microbes in a t milliliter sample will be Poisson distributed with parameter
λ = 5t. With 1,000 mL = 1 L, we will use λ = 5000.

P (X > 5100) =
∑∞

x=5101
e−5000(5000)x

x! ≈ 0.07796233

We can calculate this in R as 1-ppois(5100,lambda=5000).

3



3. If a certain high energy particle enters the Earth’s atmosphere at rate 280 per day, calculate
the probability that there are at most 1 in a given 10 minute interval.

Solution:

280 events per day means 280/24/60 per minute, then times 10 for a 10min interval.

We use: X ∼ Pois(λ = 35/18).

P (X ≤ 1) = P (X = 0) + P (X = 1) = e−λ + e−λλ = e−35/18 + e−35/18 3518 ≈ 0.4212519

4. If Earth only encounters a particular high energy particle type on average once per century,
Calculate the probability that there is at least one such particle in the next year.

Solution:

We’ll use λ = 0.01 since once per century would scale down by a factor of 100 to calculate
probabilities for a single year.

P (X ≥ 1) = 1− P (X = 0) = 1− e−0.01 ≈ 0.009950166.

This is fairly close to a 1% chance. This is generally true for a very small rate parameter.
If λ is very small, say less than 0.1 or so, then the probability of at least one event is
approximately λ.
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