Chapter 4 Summary and Review (draft: 2019/11/17-21:15:28)

Expected value

Summary of topics and terminology:

- Expected value is the same as what we normally think of as 'average' or 'mean'.
- $\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x$ for continuous real-valued random variable X with pdf $f_{X}(x)$.
- $\mathrm{E}(X)=\sum_{x} x f_{X}(x)$ for discrete random variable X with pmf $f_{X}(x)$.
- Expected value of a function of RV $X: \mathrm{E}(u(X))=\int_{-\infty}^{\infty} u(x) f_{X}(x) d x$ or $\sum_{x} u(x) f_{X}(x)$
- Expectation E() is a 'linear operator'. That means it distributes over sums and differences nicely, and that we can pull out constant coefficients:
(1)+ $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$
n|t $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$
(1) $\mathrm{E}\left(\sum_{k} X_{k}\right)=\sum_{k} \mathrm{E}\left(X_{k}\right)$

Int* $\mathrm{E}\left(\sum_{k} c_{k} u_{k}(X)\right)=\sum_{k} c_{k} \mathrm{E}\left(u_{k}(X)\right)$

- Multivariate expectation: $\mathrm{E}(u(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, y) f_{X, Y}(x, y) d x d y$ or $\sum_{x} \sum_{y} u(x, y) f_{X, Y}(x, y)$

Example problems:

1. Givene pdf $f(x)=2 x$ for $0<x<1$. Find $\mathrm{E}(X)$.

Solution:

$\mathrm{E}(X)=\int_{0}^{1} x \cdot 2 x d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3}$.
2. Consider a bag with 4 red balls and 3 blue balls. Draw 5 w/o replacement. Let X be the number of blue balls drawn. Find $\mathrm{E}(X)$.
Solution:
$P(X=x)=\frac{\binom{4}{5-x}\binom{3}{x}}{\binom{7}{5}}$ for $x=1,2,3$.
$\mathrm{E}(X)=1 \cdot \frac{\binom{4}{4}\binom{3}{1}}{\binom{7}{5}}+2 \cdot \frac{\binom{4}{3}\binom{3}{2}}{\binom{7}{5}}+3 \cdot \frac{\binom{4}{2}\binom{3}{3}}{\binom{7}{5}}=\frac{1}{7}+\frac{8}{7}+\frac{6}{7}=\frac{15}{7} \approx 2.14$
3. Consider the joint pdf $f(x, y)=6 e^{-2 x-3 y}$ for $x>0, y>0$. Calculate $\mathrm{E}(X+Y)$.

Solution:

$\mathrm{E}(X+Y)=\int_{0}^{\infty} \int_{0}^{\infty}(x+y) 6 e^{-2 x-3 y} d x d y=\int_{0}^{\infty} \int_{0}^{\infty} x 2 e^{-2 x} \int_{0}^{\infty} 3 e^{-3 y} d y+\int_{0}^{\infty} \int_{0}^{\infty} 2 e^{-2 x} \int_{0}^{\infty} y 3 e^{-3 y} d y=$ $\frac{1}{2}+\frac{1}{3}$
Also notice that the joint pdf is separable and $f(x, y)=2 e^{-2 x} 3 e^{-3 y}$ Thus X and Y are independent exponential random variables and $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)=\frac{1}{2}+\frac{1}{3}$.

Moments

Summary of topics and terminology:

- Moments can be thought of the average value of the RV raised to a power.
- $n^{\text {th }}$ raw moment or moment about the origin: $m_{n}=\mu_{n}^{\prime}=\mathrm{E}\left(X^{n}\right)=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x$ for continuous real-valued random variable X with pdf $f_{X}(x)$.
- $m_{n}=\mu_{n}^{\prime}=\mathrm{E}\left(X^{n}\right)=\sum_{x} x^{n} f_{X}(x)$ for discrete random variable X with pmf $f_{X}(x)$.
- $n^{\text {th }}$ central moment or moment about the mean: $\mu_{n}=\mathrm{E}\left((X-\mu)^{n}\right)=\int_{-\infty}^{\infty}(x-\mu)^{n} f_{X}(x) d x$ for continuous and $\mu_{n}=\mathrm{E}\left((X-\mu)^{n}\right)=\sum_{x}(x-\mu)^{n} f_{X}(x)$ for discrete
- Multivariate moments: $\mu_{n, k}^{\prime}=\mathrm{E}\left(X^{n} Y^{k}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{n} y^{k} f_{X, Y}(x, y) d x d y$ or $\sum_{x} \sum_{y} x^{n} y^{k} f_{X, Y}(x, y)$
- Variance is the $2^{n d}$ central moment: $\operatorname{Var}(X)=\sigma_{X}^{2}=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu_{X}^{2}$.
- Moment generating function: $M_{X}(t)=\mathrm{E}\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x$ or $\sum_{x} e^{t x} f_{X}(x)$
- MGF is a power series with moments as coefficients:
$M_{X}(t)=1+\mathrm{E}(X) t+\frac{1}{2} \mathrm{E}\left(X^{2}\right) t^{2}+\frac{1}{3!} \mathrm{E}\left(X^{3}\right) t^{3}+\cdots$
- Moments can be calculated from MGF by taking derivatives and evaluating at $t=0$: $\mathrm{E}\left(X^{n}\right)=M_{X}^{(n)}(0)=\left.\frac{d^{n}}{d t^{n}} M_{X}(t)\right|_{t=0}$.
- Chebyshef's theorem: $P\left(|X-\mu|>k \sigma^{2}\right) \leq \frac{1}{k^{2}}$.

Example problems:

1. Givene pdf $f(x)=2 x$ for $0<x<1$. Find $\mu, \mu_{2}^{\prime}, \mu_{2}, \sigma^{2}$.

Solution:

$\mu=\mathrm{E}(X)=\int_{0}^{1} x \cdot 2 x d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3}$.
$\mu_{2}^{\prime}=\mathrm{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} \cdot 2 x d x=\left.\frac{2}{4} x^{4}\right|_{0} ^{1}=\frac{1}{2}$.
$\sigma^{2}=\mu_{2}=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\mu_{2}^{\prime}-\mu^{2}=\frac{1}{2}-(2 / 3)^{2}=\frac{1}{18}$.
So this random variable has mean $\frac{2}{3}$ and variance $\operatorname{Var}(X)=\frac{1}{18}$.
2. Find the moment generating function for X with $\operatorname{pdf} f(x)=2 x$ on $[0,1]$.

Solution:

$M(t)=\mathrm{E}\left(e^{t X}\right)=\int_{0}^{1} e^{t x} 2 x d x=\left.2 x \frac{1}{t} e^{t x}\right|_{0} ^{1}-2 \int_{0}^{1} \frac{1}{t} e^{t x} d x=2 \frac{1}{t} e^{t}-\left.2 \frac{1}{t^{2}} e^{t x}\right|_{0} ^{1}=2\left(\frac{1}{t} e^{t}-\frac{1}{t^{2}} e^{t}+\frac{1}{t^{2}}\right)$
3. Given moment generating function $M_{X}(t)=\frac{1}{1-t} t^{2}$ find $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$.

Solution:

$M^{\prime}(t)=(1-t)^{-2} e^{t^{2}}+(1-t)^{-1} 2 t e^{t^{2}}$ thus $M^{\prime}(0)=1=\mathrm{E}(X)$.
$M^{\prime \prime}(t)=2(1-t)^{-3} e^{t^{2}}+(1-t)^{-2} 2 t e^{t^{2}}+(1-t)^{-2} 2 t e^{t^{2}}+(1-t)^{-1} 2 e^{t^{2}}+(1-t)^{-1} 4 t^{2} e^{t^{2}}$ thus $M^{\prime \prime}(0)=4=\mathrm{E}\left(X^{2}\right)$.

Linear combinations and covariance

Summary of topics and terminology:

- Linear combination of RVs X_{1}, X_{2}, \ldots is $\sum_{i=1}^{\infty} c_{i} X_{i}$
- $\sigma_{X Y}=\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\mathrm{E}(X Y)-\mu_{X} \mu_{Y}$ and can be positive or negative or zero.
- RVs X and Y independent implies that they have zero covariance, but zero covariance does not imply independence.
- $Y_{1}=\sum_{i} a_{i} X_{i}$ and $Y_{2}=\sum_{i} b_{i} X_{i}$, then:

ㄴ! $\operatorname{Var}\left(Y_{1}\right)=\sum_{i} a_{i}^{2} \operatorname{Var}\left(Y_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
! $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\sum_{i} a_{i} b_{i} \operatorname{Var}\left(X_{i}\right)+\sum_{i<j}\left(a_{i} b_{j}+a_{j} b_{i}\right) \operatorname{Cov}\left(X_{i}, X_{j}\right)$

Example problems:

1. Let $Y_{1}=3 X_{1}-X_{2}$ and $Y_{2}=X_{1}+5 X_{2}$. Given that X_{1} and X_{2} have variances, 1 and 2 , respectively, and covariance -1, find the covariance of Y_{1} and Y_{2}.
Solution:
$\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=3 \cdot 1 \cdot \operatorname{Var}\left(X_{1}\right)+(-1) \cdot 5 \cdot \operatorname{Var}\left(X_{2}\right)+(3 \cdot 5+(-1) \cdot 1) \operatorname{Cov}\left(X_{1}, X_{2}\right)$
$=3 \cdot 1-5 \cdot 2+14 \cdot(-1)=-21$
2. Given joint pdf $f(x, y)=2$ on $0<x<y<1$, find $\operatorname{Cov}(X, Y)$.

Solution:
$\mu_{X}=\int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} 2 x d x d y=\frac{1}{3}$
$\mu_{Y}=\int_{-\infty}^{\infty} y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} 2 y d x d y=\frac{2}{3}$
$\mathrm{E}(X Y)=\int_{-\infty}^{\infty} x y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} 2 x y d x d y=\frac{1}{4}$
$\sigma_{X Y}=\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mu_{X} \mu_{Y}=\frac{1}{4}-\frac{1}{3} \cdot \frac{2}{3}=\frac{1}{36}$
3. If $\operatorname{Cov}(X, Y)=0$, are X and Y independent?

Solution:

No! Independent RVs do have zero covariance, but zero covariance does not imply independence!

Conditional expectation

Summary of topics and terminology:

- $\mathrm{E}(X \mid X \in A)=\frac{\int_{A} x f_{X}(x) d x}{P(X \in A)}$
- $\mathrm{E}(X \mid Y \in A)=\frac{\int_{-\infty}^{\infty} \int_{A} x f(x, y) d y d x}{P(Y \in A)}$
- $\mathrm{E}(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y=y}(x \mid y) d x=\int_{-\infty}^{\infty} x \frac{f(x, y)}{f_{Y}(y)} d x$ for y a ${ }^{*}$ fixed ${ }^{*}$ value
- The above formulas are given for continuous RVs, but the formulas for discrete RVs would be the same but with summations instead of integrals.
- We can take the expectation of functions of RVs this way as well, e.g.
$E(u(X) \mid X \in A)=\frac{\int_{A} u(x) f_{X}(x) d x}{P(X \in A)}$
- $E(u(X, Y) \mid X \in A, Y \in B)=\frac{\int_{B} \int_{A} u(x, y) f(x, y) d x d y}{P(X \in A, Y \in B)}$
- Conditional mean: $\mu_{X \mid y}=\mathrm{E}(X \mid Y=y)$
- Conditional variance: $\sigma_{X \mid y}^{2}=\mathrm{E}\left(X^{2} \mid Y=y\right)-\mu_{X \mid y}^{2}$

Example problems:

1. Consider $\operatorname{pmf} f(x)=x / 6$ for $x=1,2,3$. Calculate $\mathrm{E}(X \mid X \neq 3)$.

Solution:

$\mathrm{E}(X \mid X \neq 3)=\frac{1 \cdot \frac{1}{6}+2 \cdot \frac{2}{6}}{\frac{1}{6}+\frac{2}{6}}=\frac{5}{3}$
2. Given pdf $f(x)=\frac{2}{x^{3}}$ for $x>1$, find $\mathrm{E}(X \mid X>t)$.

Solution:
$\mathrm{E}(X \mid X>t)=\frac{\int_{t}^{\infty} x \frac{2}{x^{3}} d x}{\int_{t}^{\infty} \frac{2}{x^{3}} d x}=\frac{-\left.2 x^{-1}\right|_{t} ^{\infty}}{-\left.x^{-2}\right|_{t} ^{\infty}}=\frac{2 / t}{1 / t^{2}}=2 t$
This means that, given that we know X is beyond some threshold value, we expect it to be twice that threshold.
3. Consider joint pdf $f(x, y)=\frac{x}{y^{2}}+\frac{1}{2} e^{1-y} \mathrm{n}[0,1] \times[1, \infty)$. Calculate the expected value of X given that Y is less than 2. Also calculate the conditional expectation of X given that Y is exactly 2 .

Solution:

$\mathrm{E}(X \mid Y<2)=\frac{\int_{0}^{1} \int_{1}^{2} x\left(\frac{x}{y^{2}}+\frac{1}{2} e^{1-y}\right) d y d x}{\int_{0}^{1} \int_{1}^{2}\left(\frac{x}{y^{2}}+\frac{1}{2} e^{1-y}\right) d y d x}$
$=\frac{\frac{1}{6}+\frac{e-1}{4 e}}{\frac{1}{4}+\frac{e-1}{2 e}}=\frac{4 e+6(e-1)}{6 e+12(e-1)}=\frac{5 e-3}{9 e-6} \approx 0.5736$
The marginal for Y is $f_{Y}(y)=\frac{1}{2 y^{2}}+\frac{1}{2} e^{1-y}$.
$\mathrm{E}(X \mid Y=2)=\int_{0}^{1} x \frac{f(x, 2)}{f_{Y}(2)} d x=\int_{0}^{1} x \frac{\frac{x}{4}+\frac{1}{2} e^{-1}}{\frac{1}{8}+\frac{1}{2} e^{-1}} d x=\frac{1}{1+4 e^{-1}} \int_{0}^{1} 2 x^{2}+4 x e^{-1} d x$
$=\frac{1}{1+4 e^{-1}}\left[\frac{2}{3} x^{3}+2 x^{2} e^{-1}\right]_{0}^{1}=\frac{\frac{2}{3}+2 e^{-1}}{1+4 e^{-1}} \approx 0.5674$

