Chapter 7 Summary and Review (draft: 2019/12/07-19:09:47)

Functions of random variable

Summary of topics and terminology:

- For random variable Y is a function os $X, Y=u(X)$ the pdf of Y is given by $f_{Y}(y)=f_{X}\left(u^{-1}(y)\right)\left|\frac{d}{d y} u^{-1}(y)\right|$
Note that this requires the function $u(x)$ to be one-to-one.
- Cumulative probability technique: if $Y=u(X)$, then $F_{Y}(y)=P(Y \leq y)=P(u(X) \leq y)$.

Then depending on the nature of $u(x)$, one can either find u^{-1} or otherwise find which intervals give this probability for X.
$P(u(X) \leq y)=P\left(X \leq u^{-1}(y)\right)$

- If $u(x)$ is not one-to-one, then you must carefully think about how " $u(X) \leq y$ " converts to one or more intervals in the form $a(y) \leq X \leq b(y)$,
e.g. $F_{Y}(y)=P(Y \leq y)=P(u(X) \leq y)=P(a(y) \leq X \leq b(y))=F_{X}(b(y))-F_{X}(a(y))$

Then $f_{Y}(y)=f_{X}(b(y))\left|b^{\prime}(y)\right|-f_{X}(a(y))\left|a^{\prime}(y)\right|$.

- For an sum of independent random variables $Y=\sum_{i=1}^{n} X_{i}$ the mgf of Y is the product of the mgf's:
$M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{X_{n}}(t)$
- If the X_{i} are i.i.d. with $\operatorname{mgf} M_{X}(t)$ then $M_{Y}(t)=\left[M_{X}(t)\right]^{n}$

Example problems:

1. If X is exponentially distributed with mean θ, find the distribution for $Y=X^{2}$.

Solution:

$f_{X}(x)=\frac{1}{\theta} e^{-x / \theta}$ and $u(x)=x^{2}$ thus $u^{-1}(y)=\sqrt{y}$.
So $f_{Y}(y)=f_{X}(\sqrt{y}) \frac{1}{2 \sqrt{y}}=\frac{1}{2 \theta} y^{-1 / 2} e^{-\frac{1}{\theta} \sqrt{y}}$ for $y>0$
2. Let X_{i} be i.i.d. and each uniformly distributed on $[0,1]$. Find the moment generating function of $Y=\sum_{i=1}^{n} X_{i}$.

Solution:

The mgf of each X_{i} is given by $M_{X}(t)=\mathrm{E}\left(e^{t X}\right)=\int_{0}^{1} e^{t x} d x=\frac{1}{t}\left(e^{t}-1\right)$.
Thus the mgf for Y is given by $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=\left[\frac{1}{t}\left(e^{t}-1\right)\right]^{n}$.
3. Show that for X and Y independent random variables, that the mgf for $Z=X-Y$ is $M_{Z}(t)=M_{X}(t) \cdot M_{Y}(-t)$.
Solution: $Z=X+(-Y)$ so the mgf for Z is $M_{X}(t) \cdot M_{-Y}(t)$ So we just need to know the mgf for $-Y$.
$M_{-Y}(t)=\mathrm{E}\left(e^{t(-Y)}=\mathrm{E}\left(e^{(-t) Y}=M_{Y}(-t)\right.\right.$
Recall that we have previously seen that $M_{a X}(t)=M_{X}(a t)$ from Theorem 4.10.
4. If $X_{k} \sim \operatorname{Pois}\left(\lambda=\frac{1}{2^{k}}\right)$ and are independent, prove that $Y=\sum_{k=1}^{\infty} X_{k} \sim \operatorname{Pois}(\lambda=1)$.

Solution:
$M_{X_{k}}(t)=e^{\frac{1}{2^{k}}\left(e^{t}-1\right)}$. Thus $M_{Y}(t)=e^{\frac{1}{2}\left(e^{t}-1\right)} \cdot e^{\frac{1}{4}\left(e^{t}-1\right)} \cdot e^{\frac{1}{8}\left(e^{t}-1\right)} \cdots=e^{\left(e^{t}-1\right) \sum_{k=1}^{\infty} \frac{1}{2^{k}}}=e^{\left(e^{t}-1\right)}$. This is exactly the Poisson mgf with parameter $\lambda=1$.

