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1 Comparing multiple populations

We now wish to compare k populations. We have a sample from each population and wish
to determine if these populations are actually different. From the ith population we have a
sample of size ni with n =

∑k
i=1 ni the total size of the entire dataset. It is best if all the

sample sizes are the same or at least of the same order of magnitude.

We will refer to each population as a “treatment” as is customary in the analysis of variance
world. This is because this technique is often used to compared different treatments, e.g.
fertilizers or medical procedures.

1.1 Sample data from k treatment groups

A dataset from multiple populations/groups/treatments:

treatment 1 sample X11, X12, . . . , X1n1

treatment 1 sample X21, X22, . . . , X2n2

...

treatment k sample Xk1, Xk2, . . . , Xknk
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We wish to know if these samples are actually taken from the same population or not. The
assumption is

Xij = µ+ αi + εij

where µi = µ + αi is the mean for treatment i and εij is the random deviation from this
mean for data point Xij. We are primarily interested in testing whether or not αi = 0 for
all treatments. We will test the null hypothesis that αi = 0 for all i under the assumption
that εij ∼ N(0, σ2).

1.2 Assumptions of the test

The null hypothesis assumes that all treatment groups have the same means and variances
and are normally distributed. If the actual populations are non-normal or the variances
are not equal, then the test will not be as accurate. However, the normality assumption is
not as important as long as the data does not have an overabundance of outliers, or has
histograms that are roughly clump-shaped. As long as you don’t have a good reason to
believe the underlying populations are extremely non-normal, then you don’t need to worry
about that assumption too much.

If the underlying populations have unequal variances, then that can have a more significant
impact on the accuracy of the test. Here are a few rough rules-of-thumb to keep in mind
on when this test will be reasonably accurate:

1. Sample sizes should be similar, e.g. the largest sample should be no larger than twice
the smallest sample.

2. Sample variances should be similar, e.g. the largest variance should be no more than
four times the smallest variance.

3. Sample size should scale with variance, e.g. the sample with the largest variance
should have the largest sample size.

4. Calculate the quantity

f0 =
n− k
k − 1

·

k∑
i=1

s2i −
1

n

k∑
i=1

nis
2
i

k∑
i=1

nis
2
i −

k∑
i=1

s2i

If it is too far away from 1, your sample sizes and variances may be too unbalanced.
Ideally this quantity should be between 0.8 and 1.2.

Even these guidelines can be violated and the test still be accurate. It is difficult to give
a perfect set of rules that will keep the one-way ANOVA test accurate. Here are some
examples to help understand these guidelines. The more one of these guidelines is violated,
as long as the others are not, then the test can still be reasonably accurate.
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Example 1: n1 = 10, n2 = 25, n3 = 15, s21 = 1.4, s22 = 0.9, s23 = 2.3. The sample sizes don’t
satisfy the guidelines above, in particular the smallest sample has the largest variance, but
f0 = 1.125 and the variances are all well within a factor of 3 of each other. The test
should not be too innacurate. In fact, if these given variances are assumed to be the actual
population variances for normal populations, then if we desire a 5% level of significance,
the actual significance will be 7.1%.

Example 2: n1 = 20, n2 = 30, n3 = 40, s21 = 0.7, s22 = 1.3, s23 = 4.1. The sample sizes satisfy
the guidelines above, and scale with the variances, f0 = 0.76, but the largest variance is
nearly a factor of 6 times the smallest. The test should not be too innacurate though since
most of the guidelines are nearly satisfied. In fact, if these given variances are assumed to
be the actual population variances for normal populations, then if we desire a 5% level of
significance, the actual significance will be 3.29%.

Example 3: n1 = 20, n2 = 30, n3 = 40, s21 = 4.1, s22 = 1.3, s23 = 0.7. Note that we
have taken the sample parameters as the previous example, but have changed the order
of the sample sizes. The sample sizes still satisfy the guidelines above, but do not scale
with the variances variance, f0 = 1.35, and the largest variance is nearly a factor of 6
times the smallest. The test may be very innacurate since many of the guidelines are not
satisfied. In fact, if these given variances are assumed to be the actual population variances
for normal populations, then if we desire a 5% level of significance, the actual significance
will be 11.6%. If we change the disparity between the variances by setting s21 = 2.1, then
the accuracy improves vastly to 8% actual significance with f0 = 1.2.

The most important rule of thumb is to have similar variances and then to have similar
sample sizes.

1.3 Treatment means and grand mean

Here are the summary statistics:

A dataset from multiple populations/groups/treatments:

treatment mean 1 x1· =
1

n1

n1∑
j=1

X1j

treatment mean 2 x2· =
1

n2

n2∑
j=1

X2j

...

treatment mean k xk· =
1

nk

nk∑
j=1

Xkj

grand mean x·· =
1∑
i n1

k∑
i=1

ni∑
j=1

Xij
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1.4 Sums of squares

We will now define a few different sums of squares:

sum of squares total SST =
k∑

i=1

ni∑
j=1

(xij − x··)2

sum of squares treatments SS(Tr) =
k∑

i=1

ni(xi· − x··)2

sum of squared errors/residuals SSE =
k∑

i=1

ni∑
j=1

(xij − xi·)2

SST = SS(Tr) + SSE

Each sum of squares has a different degrees of freedom associated with it. There are n total
data points so SST has n − 1 degrees of freedom, there are k treatments, so SS(Tr) has
k− 1 degrees of freedom, and SSE has n− k degrees of freedom. Note that the degrees of
freedom sum as well: n− 1 = (k − 1) + (n− k).

1.5 f distribution

Under the assumption that εij ∼ N(0, σ2) and are independent, then we can get two differen
estimators for σ2:

σ̂2 =
SS(Tr)

k − 1

σ̂2 =
SSE

n− k
It follows that (

SS(Tr)

(k − 1)σ2

)/(
SSE

(n− k)σ2

)
is f -distributed with k − 1 numerator degrees of freedom and n − k denominator degrees
of freedom.

We define the mean squared errors:

MS(Tr) =
SS(Tr)

k − 1

MSE =
SSE

n− k
and thus MS(Tr)

MSE
∼ fk−1,n−k.

We use this to create a test statistics and conduct a hypothesis test.
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1.6 Hypothesis test

H0 : µi = µj for all i, j (all treatments have the same mean)
Ha : µi 6= µj for at least one i, j pair (some treatment differs from another)

Recalling that Xij = µ+ αi + εij the hypotheses can also be rephrased as

H0 : αi = 0 for all i
Ha : αi 6= 0 for at least one i

Our test statistic is

f ∗ =
MS(Tr)

MSE

which has f -distribution with k − 1 numerator degrees of freedom and n− k denominator
degrees of freedom.

The p-value is P (fk−1,n−k ≥ f ∗) = 1-pf(f ∗,k-1,n-k).

1.7 Effect size

The effect size tells us how much variation between the treatment groups is due to their
having different means vs just random variation.

η2 =
SS(Tr)

SST

η2 ≤ 0.01 is considered a small effect,
η2 ≈ 0.06 is considered a medium effect,
η2 > 0.14 is considered a large effect,

You can interpret η2 as the “percent of variation in the data that is explained by the
difference between the treatment means.” Similarly you can interpret SSE

SST
as the percent

of variation in the data that is due to randomness. Note that SSTr
SST

+ SSE
SST

= 1.

1.8 One-way ANOVA summary table

1.9 Complete R code for one-way ANOVA

The following is a complete code for conducting a one-way analysis of variance.

The simplest method is to record your data in spreadsheet with two columns, one with
the numerical data and the other with the group names. It is important to have actual
group names instead of numerical values, e.g. {group1, group2, group3, group4, group5}
or {A, B, C, D, E} instead of {1, 2, 3, 4, 5}. See image below. You can change the data
header from “data” to whatever you like (no spaces) and the group header from “group” to
whatever you like. Of course, you can change the group names from {A, B, C} to whatever
you like as well.
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Here is dataset with 3 treatments and 5 sampled points from each treatment:

# data group
1 52 A
2 48 A
3 28 A
4 54 A
5 53 A
6 60 B
7 43 B
8 43 B
9 85 B

10 51 B
11 56 C
12 63 C
13 58 C
14 53 C
15 57 C

Here it is in an Excel spreadsheet:

For this spreadsheet, I would highlight the cells A1:B16, copy them to the computer’s
clipboard, and then execute the commands in R:

> d = read.data("clipboard",header=TRUE)

summary(aov(d$data∼d$group))

It gives otuput

Df Sum Sq Mean Sq F value Pr(>F)

d$group 2 329.2 164.6 1.132 0.354

Residuals 12 1744.4 145.4

The test statistics is f ∗ = 1.132 and the p-value is p = 0.354 thus we would not reject the
null hypothesis for this particular dataset. We do not have evidence against the claim that
treatments A, B, and C come from the same population.

Here is a complete R code that does the entire analysis of variance hypothesis “manually”
so-to-speak. This code requires that you have your data copied to clipboard with headers.

> d=read.table("clipboard",header=TRUE)

d=d[order(d$group),]

xdd=mean(d$data)

SST=sum((d$data-xdd)^2)

g=levels(d$group)

k=length(g)

n=length(d$data)

nvec=as.numeric(table(d$group))

SSTr=0

xd=vector("numeric",length=length(g))
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for (i in 1:length(g)){
xd[i]=mean(d$data[d$group==g[i]])

SSTr=SSTr+nvec[i]*(xd[i]-xdd)^2

}
xdvec=NULL

for (i in 1:length(g)){
xdvec=c(xdvec,rep(xd[i],nvec[i]))

}
SSE=sum((d$data-xdvec)^2)

MSTr=SSTr/(k-1)

MSE=SSE/(n-k)

f=MSTr/MSE

1-pf(f,k-1,n-k)

Here is a complete R code that does the entire analysis of variance hypothesis where you
enter each treatmetn sample data as a separate list. The parts of the code that you must
modify are given in red.

> x1=c(input group 1 data)

x2=c(input group 2 data)
...

xk=c(input group k data)

data=c(x1,x2,...,xk)

group=c(rep("A1",length(x1)),rep("A2",length(x2)),...,rep("Ak",length(xk)))

group=as.factor(group)

data=data[order(group)]

group=group[order(group)]

xdd=mean(data)

SST=sum((data-xdd)^2)

g=levels(group)

k=length(g)

n=length(data)

nvec=as.numeric(table(group))

SSTr=0

xd=vector("numeric",length=length(g))

for (i in 1:length(g)){
xd[i]=mean(data[group==g[i]])

SSTr=SSTr+nvec[i]*(xd[i]-xdd)^2

}
xdvec=NULL

for (i in 1:length(g)){
xdvec=c(xdvec,rep(xd[i],nvec[i]))

}
SSE=sum((data-xdvec)^2)

MSTr=SSTr/(k-1)

MSE=SSE/(n-k)

f=MSTr/MSE

1-pf(f,k-1,n-k)
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2 A few formulas for simple calculations

We can calculate the ANOVA quantities simply by hand by summing up the data for each
treatment group (

∑
x), and also summing up all the squared data values for each treatment

group (
∑
x2).

CF =

(∑
i,j

xij

)2

n

SST =
∑
i.j

x2ij − CF

SS(Tr) =
k∑

i=1

(∑ni

j=1 xij

)2
ni

− CF

SSE = SST − SS(Tr)

Then we have degrees of freedom k − 1 for SS(Tr) and n − k for SSE, and use this to
calculate MS(Tr), MSE, and f ∗ as already discussed.

Example: Here is a small dataset from 3 treatment groups with summary information.

group A B C
data 3 2 3

4 5 8
5 5

7∑ni

j=1 xij 12 19 11∑ni

j=1 x
2
ij 50 103 73

ni 3 4 2

CF = 122+192+112

3+4+2
= 1764

9
= 196

SST = 50 + 103 + 73− 196 = 30

SS(Tr) = 122

3
+ 192

4
+ 112

2
− 196 = 2.75

SSE = 30− 2.75 = 27.25

MS(Tr) = 2.75
2

= 1.375

MSE = 27.25
6
≈ 4.54167

f ∗ = 1.375
4.54167

≈ 0.30275

p = 1-pf(0.30275,2,6) ≈ 0.7494396. Thus we would not reject the null hypothesis in
this case.
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To work this example using the R code provided, we would type:

> x1=c(3,4,5)

x2=c(2,5,5,7)

x3=c(3,8)

data=c(x1,x2,x3)

group=c(rep("A1",length(x1)),rep("A2",length(x2)),rep("A3",length(x3)))

group=as.factor(group)

data=data[order(group)]

group=group[order(group)]

xdd=mean(data)

SST=sum((data-xdd)^2)

g=levels(group)

k=length(g)

n=length(data)

nvec=as.numeric(table(group))

SSTr=0

xd=vector("numeric",length=length(g))

for (i in 1:length(g)){
xd[i]=mean(data[group==g[i]])

SSTr=SSTr+nvec[i]*(xd[i]-xdd)^2

}
xdvec=NULL

for (i in 1:length(g)){
xdvec=c(xdvec,rep(xd[i],nvec[i]))

}
SSE=sum((data-xdvec)^2)

MSTr=SSTr/(k-1)

MSE=SSE/(n-k)

f=MSTr/MSE

1-pf(f,k-1,n-k)

which gives the output

[1] 0.7494381

So both methods agree in p-value to 4 decimal places. If we didn’t round our MSE, then
we would have matched all decimal places.
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