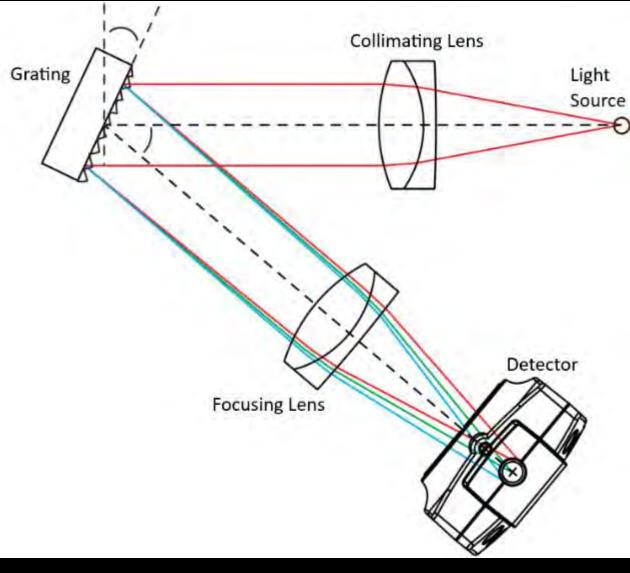
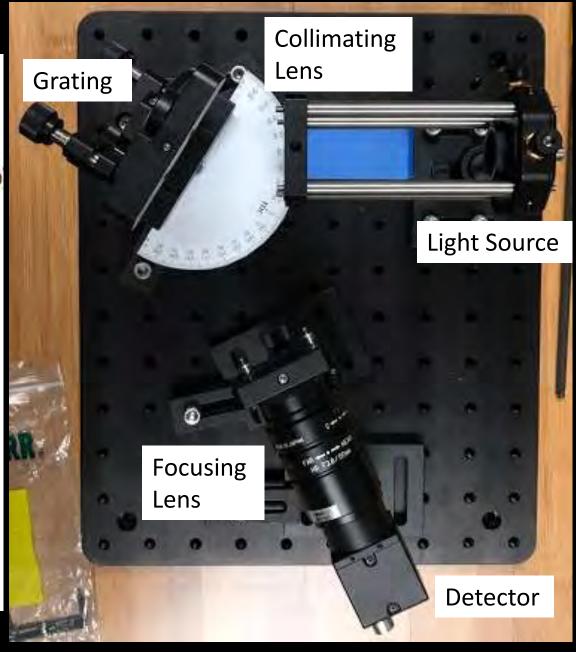

Raman Spectroscopy Project Status & Prototype Update

ENSC 62 Conrad Weeks and Ethan Durbano

Project Background

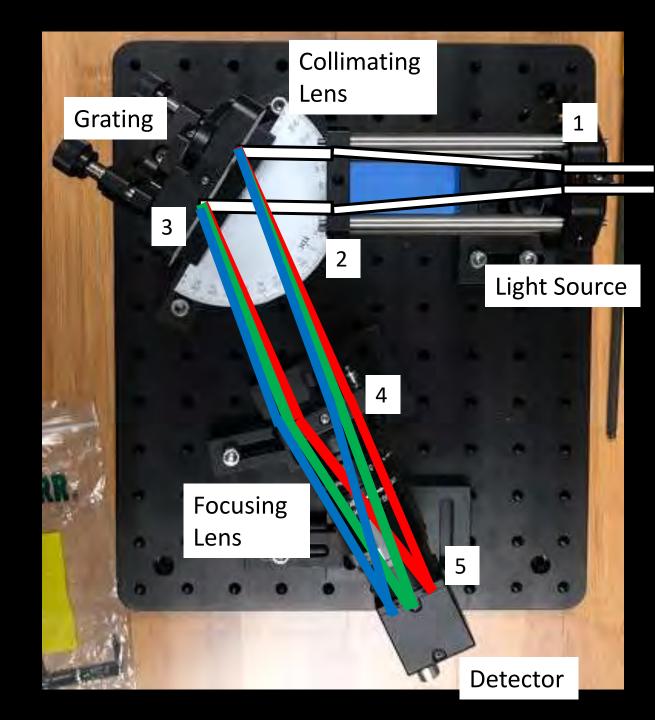

Project Goal


 Build a Raman Spectrometer for Dr. Baumgardner to advance his research in the Combustion Lab

Why it is Needed

• Current spectrometer's resolution is too coarse to detect the Raman shift

Fundamental Components



http://www.thepulsar.be/article/complete-400-800-nm-spectrometer-designfrom-a-to-z/

How It Works

- 1. Light enters the spectrometer through fiber optic cable
- 2. Light is collimated through the collimating lens
- 3. Collimated light is dispersed with the grating
- 4. Dispersed light travels to the focusing lens
- 5. Light is focused down into the detector

Project Deliverables

- Completed Raman spectrometer
 - Components assembled and aligned
 - Detector calibrated for desired wavelength range
 - Ready and able to collect data from at least a liquid sample
- Enclosure for the spectrometer assembly
 - 80/20 T-slotted aluminum
 - Thorlabs black Hardboard
 - Rubber grommets to allow fiber/USB cable access
- User manual
 - Components list
 - Safe operation
 - Calibration procedure
 - Experiment procedure

Unexpected Setback

- Due to the COVID-19 virus, physical progress on the spectrometer was stopped.
- Updated Goals:
 - Create User Manual
 - Design Testing/Calibration Procedures
 - Prepare all information needed to complete project

Deliverables

Spectrometer

- Components assembled and alignment is still required
- Calibration
 - Neon lamp from physics department
 - Neon is common calibration standard for Raman Spectrometers
- Data collection
 - Can begin following calibration
 - Utilize detector software to collect data being output by spectrometer
 - Input data to MATLAB

Deliverables

Enclosure

- Leftover 80/20 from Combustion Lab
- Thorlabs Black Hardboard
 - Light-tight material to prevent stray light entering experiment
- Thorlabs Black Masking Tape
 - Very low transmittance
 - Used to seal edges/corners from stray light
- Cut-to-Size Grommets
 - Allows for cable access in/out of enclosure

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=45

Deliverables

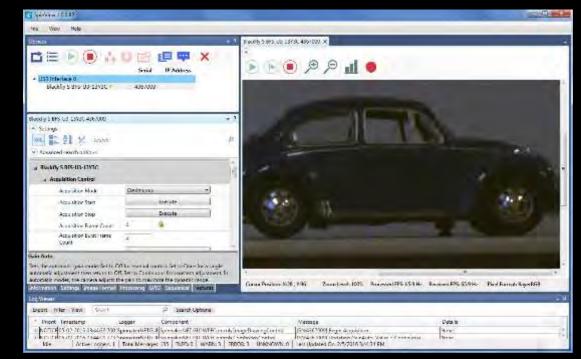
User Manual

- Safe Laser Operation
- Complete List of Components and SolidWorks Drawings of each Assembly
- Calibration/Experiment Procedure
- Proper Spectrometer Use/Handling

- Preparing the sample
 - Liquid: Cuvette

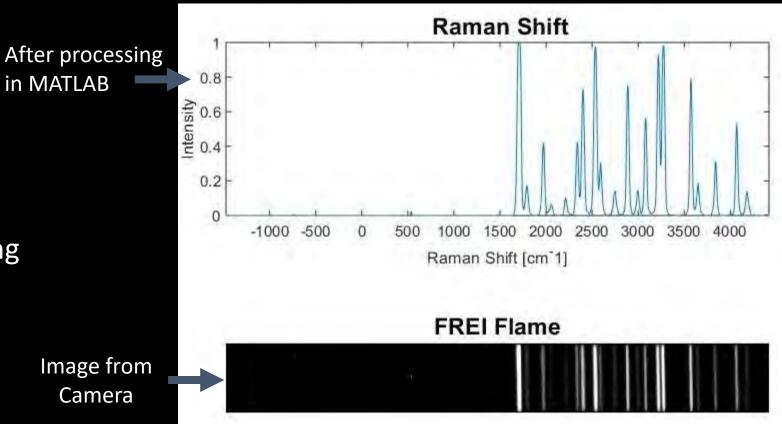
• Gas: Micro-reactor Flame

Cuvette

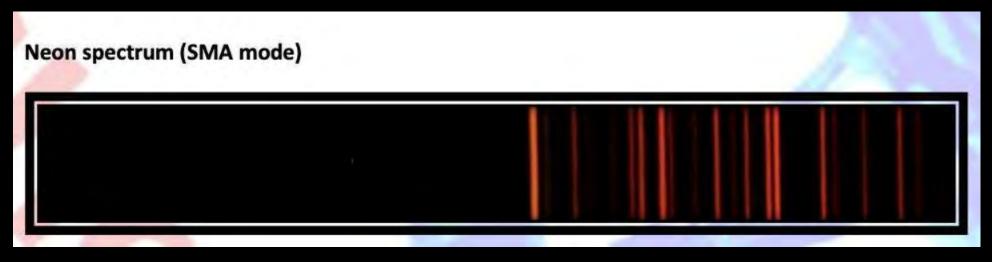

Micro-reactor Flame https://connect.gonzaga.edu/baumgardner/news

- Set up the Spectrometer
 - Place Spectrometer in the enclosure
 - Laser and Camera plugged in
 - Fiber Optic cable attached to collector and Spectrometer

p id=49

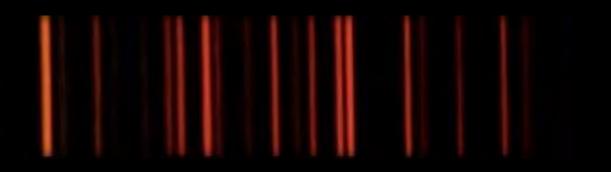

- SpinView camera software
 - Change camera exposure
 - Start/Stop Data collection
 - See and save images

http://softwareservices.flir.com/Spinnaker/latest/page4.html

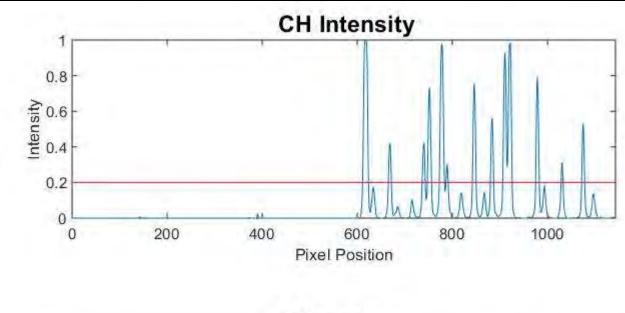

- Collecting Data
 - Safety
 - Close safety curtains around laser and sample
 - Secure spectrometer enclosure
 - Laser safety goggles
 - Turn on laser to desired power level
 - Turn off lights in the room and start the camera

- Analyzing the Data
 - Import camera images into MATLAB
 - Perform vertical binning on image
 - Plot results

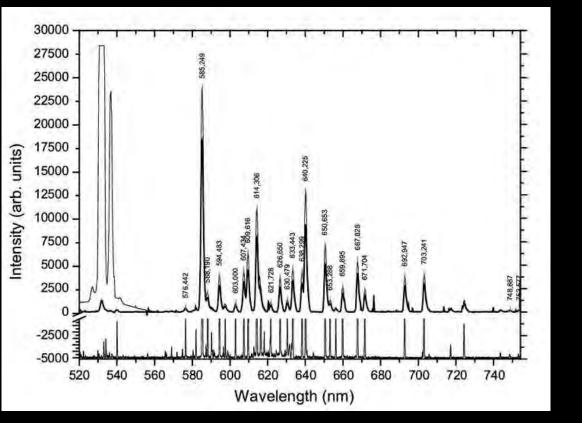
Calibration

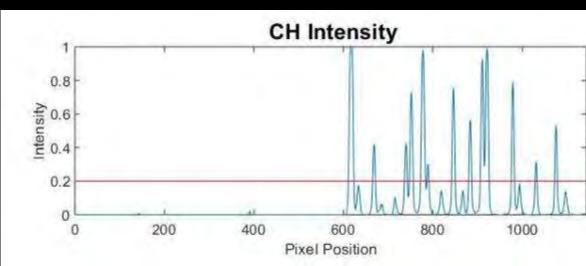

• Use sample data in place of actual spectrometer image

Resource: [1]

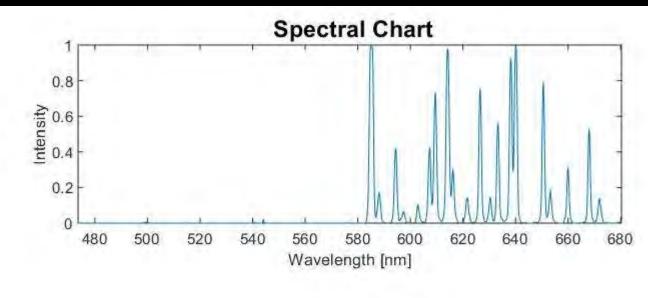

Calibration: The Steps

- Crop image to size:
 - Include as much of the spectrum lines as possible
 - Cut out excess background to reduce noise in the data


Calibration: The Steps

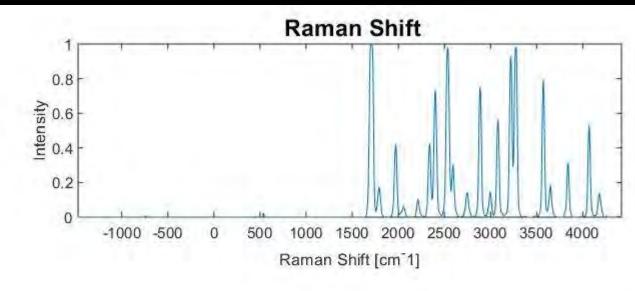

- Import cropped image into hz_intensity.m MATLAB file
 - Obtain sample spectrum data; match adjacent peaks

Calibration: Comparing Peaks

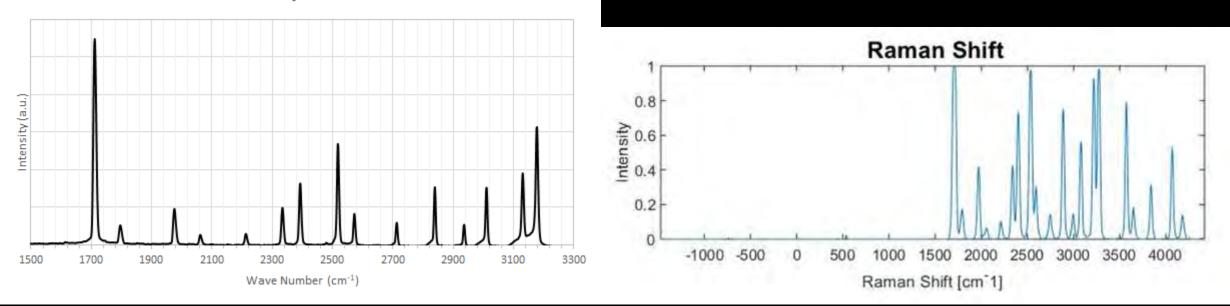


Resource: [2]

Calibration: The Steps


- Determine the calibrated wavelength values for the x-axis
 - Calculate wavelength resolution, and starting/ending wavelengths

Calibration: The Steps


- Determine the calibrated Raman shift values for xaxis
 - Same procedure as calibrated wavelength axis

Calibration Results

Neon Spectrum

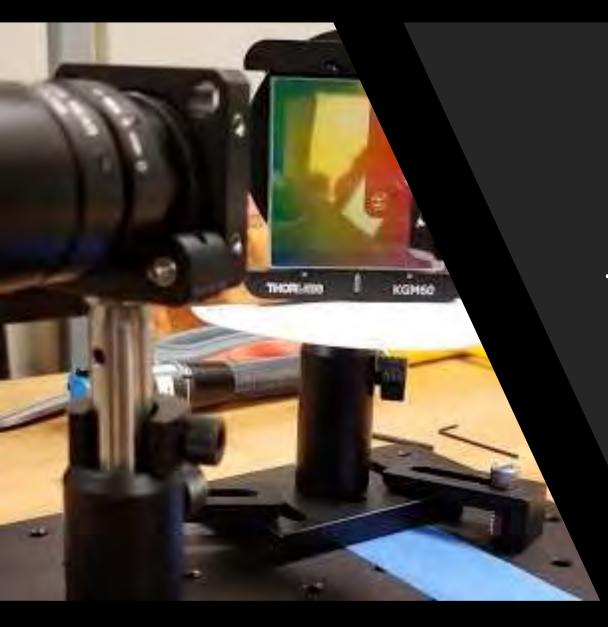
http://www.thepulsar.be/article/diy-raman-spectroscopy/

Spectrum Status

- First "test" spectrum obtained using LED flashlight
- Gradient shown is coming from the end of imaging lens
 - This is roughly how the gradient will appear on the face of the detector

Project Risks

- Global Pandemic
- Risk of Low Signal Strength
 - Weak signal: Gas-phase samples, small fiber optic input
 - Can be overcome by extending exposure times
- Physical Risk Posed by Laser
 - Proper Laser Safety
 - Laser training
 - Appropriate laser goggles/laser curtains

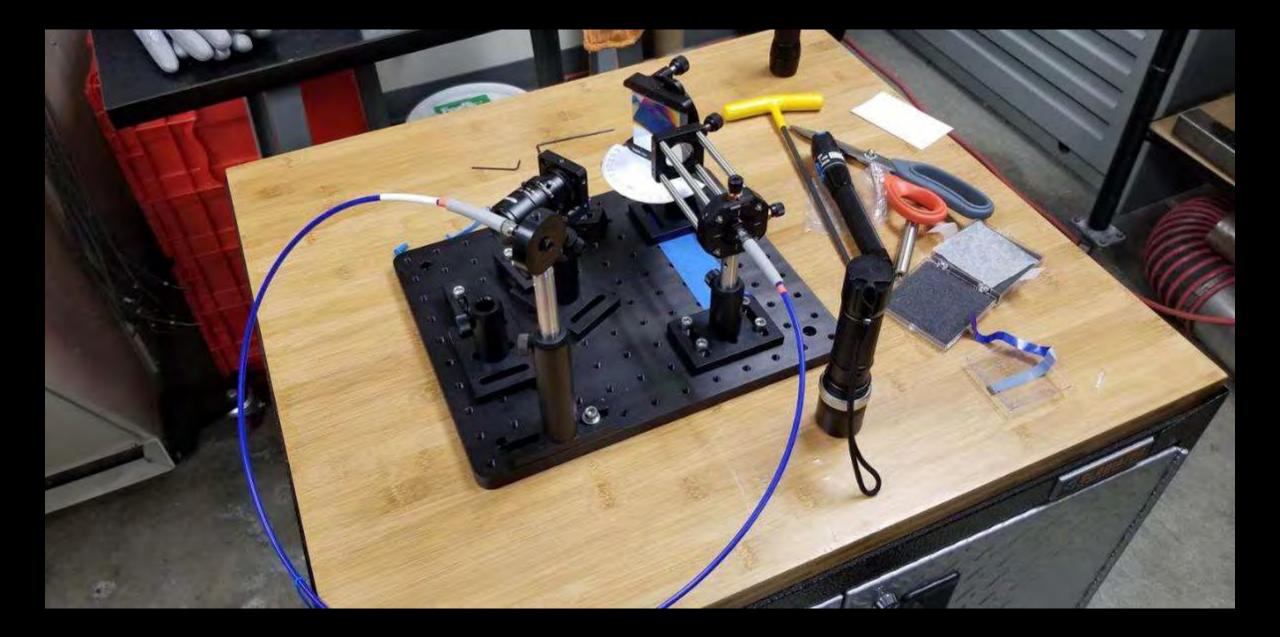

Schedule

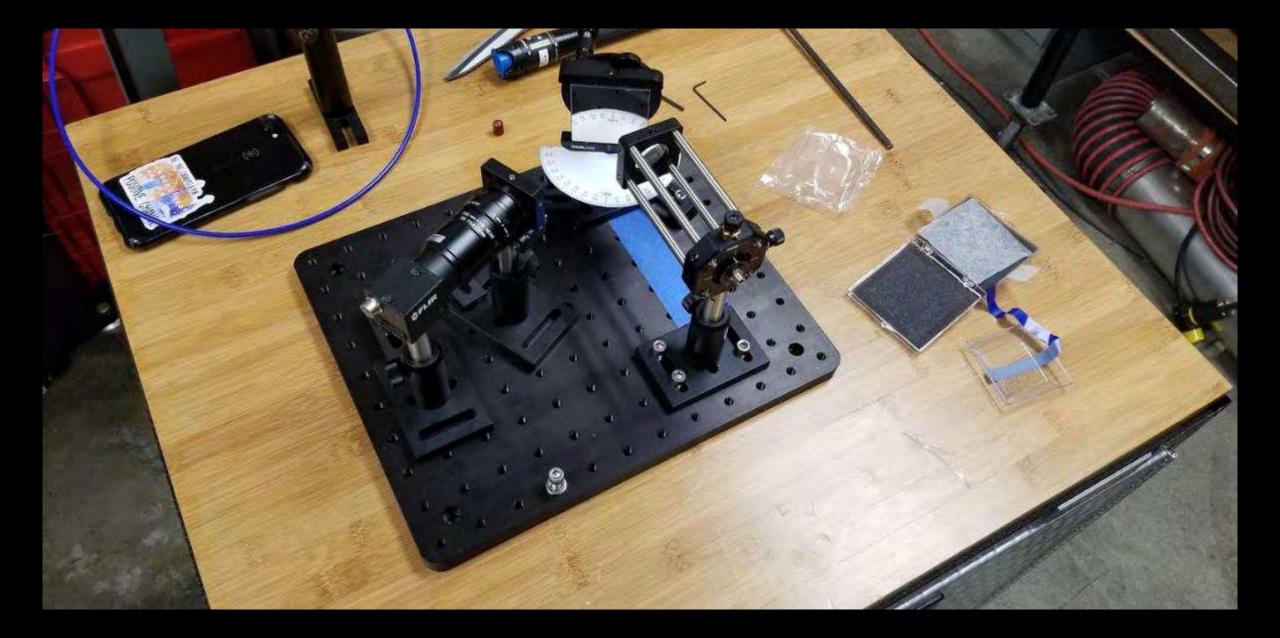
Raman Spectrometer Project

					Period Highlight:	35	//// P	tan Duri	ation		Actual 5	tart		% Co	mple	te	12	AC	tual (b	eyond	plan)					% Com	plete	(beyo	nd plar	n)			
ACTIVITY	PLAN	PLAN DURATION	ACTUAL	ACTUAL	PERCENT COMPLETE			4 5 4	671	8 9	10 11	12 1	3 14	15	16	17	18 1	9 2	0 21	22	23	24	25	26	27	28	29	30	31 3	2 33	34	35	36
Research	1	12	1	15	100%																												
Project Plan	1	7	6	2	100%																												
Lit. Review	1	12	6	10	100%				1																								
Presentation Prep	7	2	8	1	100%																												
Specs	7	2	7	9	100%																												
Pricing and Ordering	7	10	7	9	100%																												
Project Status Presentation 1 Prep.	13	3	13	.3	100%																												
Final Status Report	10	4	12	2	100%					1																							
Spectrometer Assembly	22	10	23	6	100%						10001001	-																					
Project Status Presentation 2 Prep.	25	3	27	,1	100%			-				at and the								(cears													
Enclosure	23	3	25		20%							atual Stable to				due																	
Software	22	10	25		45%							from t																					
Testing	26	10	27	-	10%							after sp ark bar:											-										
Calibration	30	2		1	0%				to the																					- control of			
Final Project Report	30	б	34	2	100%																												
User Manual	30	б	34	2	100%																												

Budget

ORDER NAME	TOTAL
Thorlabs 1	\$1,369.02
FLIR 1	\$913.92
Thorlabs 2	\$243.09
Thorlabs Grating	\$375.06
FLIR cable	\$16.32
Thorlabs 3	\$316.82
Amazon	\$28.96
Baselab Tools	\$125.85
McMaster-Carr	\$5.56+S&H
Super Bright LEDs	\$26.36
Est. Total:	~ \$3,420.96

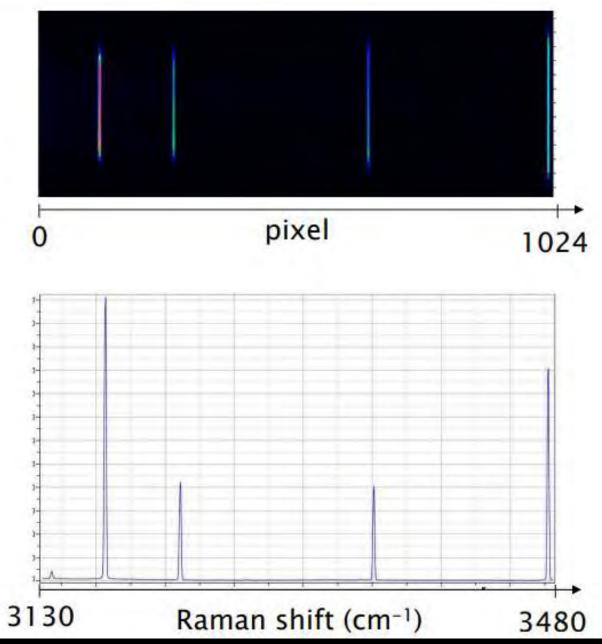



Thank You!

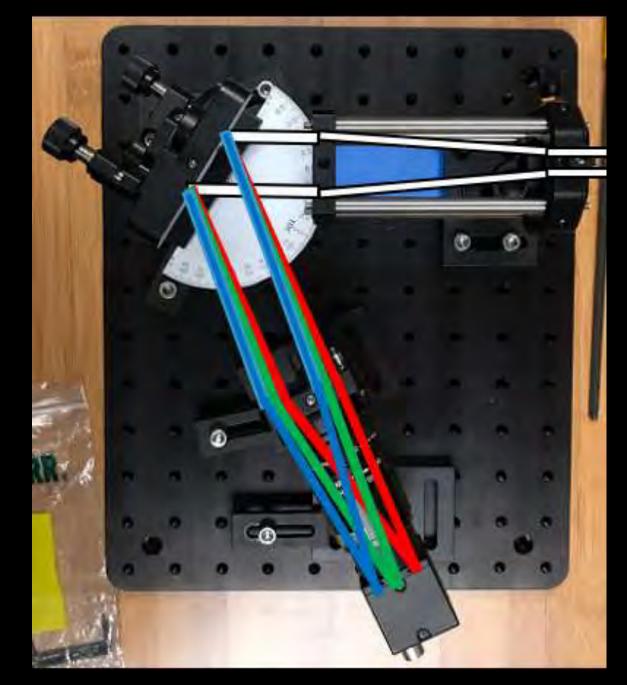
Questions?

Resources

- 1. Jean Dubessy, Marie-Camille Caumon, Shiv Sharma, & Fernando Rull.*Instrumentation in raman spectroscopy, part 2: How to calibrate your spectrometer.*
- Usachev, A. D., Zobnin, A. V., Shonenkov, A. V., Lipaev, A. M., Molotkov, V. I., Petrov, O. F., ... Padalka, G. I. (2018). Influence of dust particles on the neon spectral line intensities at the uniform positive column of dc discharge at the space apparatus "Plasma kristall-4". *Journal of Physics: Conference Series, 946*, 12143. doi:10.1088/1742-6596/946/1/012143



Next Steps


- Precise alignment
- Building enclosure
- Creating user manual
- Calibration using neon lamp
- Creating test-stand to hold cuvettes for liquid samples
- Software/data analysis
- Testing using liquid and/or gas samples

Cuvette

http://georaman2014.wustl.edu/previous/2012/georaman10.uhpnancy.fr/planchesInternationalschool/003%20Calibration_MC-Caumon.pdf

Components

Detector: FLIR Blackfly S Camera

- 2448 pixels in horizontal direction
- Includes software for image collection
- Unlimited exposure time with trigger

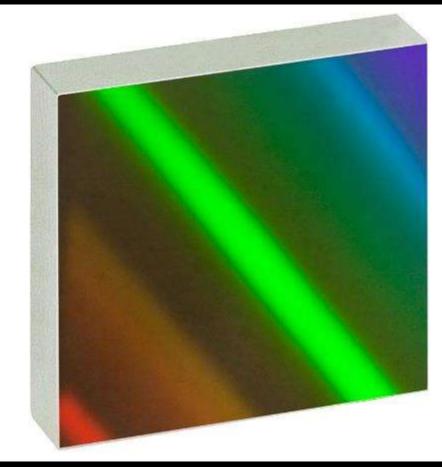
https://www.flir.com/globalassets/impor ted-assets/image/blackflys-cmountusb.png

Components

Imaging Lens: Navitar Fixed-Zoom Camera Lens

- 50 mm Focal Length
- C-mount allows for easy attachment to FLIR camera

https://www.thorlabs.com/images/Tabl mages/machine_vision_lens_8mm_A1-780.jpg


FLIR Camera Mounted to Imaging Lens

Components

Grating: 1800 groove/mm Holographic Grating

- Chosen for ideal dispersion angles found using the grating equation
- Should give a total angle of about 66 deg. between incident beam and median diffracted beam

https://www.thorlabs.com/images/xlarg e/11795-xl.jpg

Diffraction Grating Mounted in the Assembly

Design Choices

Fiber Optic

- 10 and 25 micron core dia. fiber optic cable
- NA: 0.10
- SMA connectors at both ends

https://www.thorlabs.com/images/xlarg e/TTN021025-xl.jpg

Components

Collimating Lens: 1" Spherical Plano-Convex Lens with 100mm Focal Length

- Focal length chosen to provide a clear image with about 90% of the lens aperture filled (determined by NA of fiber optic chord)
- Common choice for collimating/focusing applications

https://www.thorlabs.com/images/large /3270-lrg.jpg

Components

ThorLabs 30mm Cage System

- Will hold 1" optics/components
- Simplifies alignment and reduces number of Degrees of Freedom

https://www.thorlabs.de/images/TabIma ges/60mm_Cage_System_Assembled_A3 -780.jpg

Budget

Budget Provided: \$3500

Budget Utilized: \$3400

Component	Part #	Quantity	Price per unit	Total price	Link
1800 In/mm, holographic, visible grating	GH50-18V	1	\$333.29	\$333.29	https://w
50 mm FL Navitar Camera Lens	MVL50M23	1	\$212.10	\$212.10	https://w
100 mm FL Plano-Convex Lens 1" dia.	LA4380-YAG	1	\$105.70	\$105.70	https://w
10 micron fiber SMA connectors (1 meter)	M65L01	1	\$123.36	\$123.36	https://w
25 micron fiber SMA connectors (1 meter)	M68L01	1	\$125.53	\$125.53	https://w
FLIR Blackfly Camera	BFS-U3-50S5M-C	1	\$835.00	\$835.00	https://w
XYZ Translation Mount (CXYZ05)	CXYZ05	1	\$353.86	\$353.86	https://w
Thread Adapter (Ex. M27x0.5) (Int. SM1)	SM1A36	1	\$21.86	\$21.86	https://w
30mm Cage Plate with 1.2" dia. Bore	CP36	2	\$22.07	\$44.14	https://w
Lens Tube 1/2" long	SM1L15	1	\$16.17	\$16.17	https://w
1" dia. Mirror Mount (for grating adapter)	KM100	1	\$39.86	\$39.86	https://w
Grating Mount Adapter	KGM60	1	\$177.47	\$177.47	https://w
Standard 1/2" dia. Post Holder	PH2	4	\$7.93	\$31.72	https://w
1/2" dia. 3" Stainless Steel Optical Posts	TR3	4	\$5.58	\$22.32	https://w
Mounting Base	BA2	4	\$7.52	\$30.08	https://w
3" ER Assembly Rods (4 Pack)	ER3-P4	2	\$25.83	\$51.66	https://w
30mm Cage Mounting Bracket	CP02B	2	\$14.94	\$29.88	https://w
1/2" thread to SMA adapter	SM05SMA	1	\$30.30	\$30.30	https://w
Arctic Silver Arctic Alumina 5g Premium Ceramic Thermal Cooling Adhesive Set (AATA-5G)	N/A	1	\$13.60	\$13.60	https://w
Black Hardboard	TB4	1	\$69.26	\$69.26	https://w
Cut-to-size Grommet (5 pack)	#2633N14	1	\$5.56	\$5.56	https://w
1.5" ER assembly rods	ER1.5-P4	1	\$22.89	\$22.89	https://w
4" ER assembly rods	ER4-P4	1	\$27.79	\$27.79	https://w
Black High-Performance Masking Tape	T743-1.0	1	\$21.10	\$21.10	https://w
1/2" dia. 2" Stainless Steel Optical Posts (5 pack)	TR2-P5	1	\$24.06	\$24.06	https://w
Slip-On Post Collars (5 pack)	R2-P5	1	\$25.75	\$25.75	https://w
Neutral Density Filter AR-coated OD:1.3	NE13A-A	1	\$76.83	\$76.83	https://w
8-32 3/8" long Cap Screws (50 pack)	SH8S038	1	\$6.93	\$6.93	https://w
Awxlumv Large Aluminum Heatsink 3.94" x2.71" x 1.41" / 100 x 69 x 36mm Heat Sinks Cooling 27	N/A	1	\$12.99	\$12.99	https://w
Vollong 5W White High Power LEDs – 5 Watt Cool White	#VL-H01W60005	1	\$6.95	\$6.95	https://w
700 mA Constant Current LED Driver	#LD-CU7012-01	1	\$8.95	\$8.95	https://w
Power Cord for Power Supplies	#_POWERCORD	1	\$4.95	\$4.95	https://w
Blackfly Camera Tripod Adapter	ACC-01-0003	1	\$5.00	\$5.00	https://w
Table Clamps for Bases (5 pack)	CL5-P5	1	\$21.88	\$21.88	https://w
1" dia. Lens 30mm Cage Mount	CP33	1	\$16.89	\$16.89	https://w
Post Thread Adapter for Camera Mount	AP8E25E	1	\$2.10	\$2.10	
USB Cable for FLIR Camera	ACC-01-2301	1	\$16.32	\$16.32	https://w
Optical Breadboard	SAB1012	1	\$130.00	\$130.00	http://w
•			Base Total:	\$3,104.10	