Please answer the questions below and either turn in a paper copy in-person or make a quality scan into a single pdf and submit via email or Blackboard.

1. Prove Part (f) of Theorem 1.7.2.

Solution:

Given that F is a field and $a \in F$, prove that $-(-a)=a$.
We have that $a \in F$ implies $-(a) \in F$ which in turn implies $-(-a) \in F$ since F contains additive inverses for all its elements. Now we have that $a+(-a)=0$ and we also have that $-(-a)+(-a)=0$ since we are working with additive inverses. So we have that $-(-a)+(-a)=$ $a+(-a)$, and that we can add a to both sides to get $(-(-a)+(-a))+a=(a+(-a))+a$. And by associativity we get $-(-a)+((-a)+a)=a+((-a)+a)$. Finally this simplifies to $-(-a)+0=a+0$, and thus $-(-a)=a$ as desired.
2. Prove Part (b) of Theorem 1.7.4.

Solution:

Given $a, b, c \in F$ and $c<0$, prove that $a c>b c$.
By Theorem 1.7.4(a) we know that $-c>-0$ and from previous work that $-0=0$. Now we apply Axiom 12 to $-c$. This gives us that $a \cdot(-c)<b \cdot(-c)$. By commutivity, associativity, and Theorem 1.7.2 (d), we can write this as $-(a c)<-(b c)$. But again by part (a) of this same theorem, this inequality is true if and only if $a c>b c$.
3. Section 1.7 Exercise 3 (b).

Solution:

Prove that $0<1$.
By trichotomy (Axiom 9), we have $0<1,0=1$ or $0>1$. We cannot have $0=1$ since Axiom 6 says that the additive and multiplicative identities must be distinct. If $0>1$, then by Axiom 12 we have that for any $c>0,0 \cdot c>1 \cdot c=c$, but this implies that $0>c$ which is a contradiction since c cannot be simultaneously greater than and less than zero. So the only possibility is that $0<1$.
Now it could be that there are no such c satisfying $c \neq 1$ with $c>0$. Since we have $1 \in F$, we automatically have $-1 \in F$, and if $1<0$, then $-1>0$, so that we do indeed have at least one "positive" element in F. Our proof implies that this positive element is also negative, which is a contradiction.
4. Section 1.7 Exercise 5.

Solution:

Prove that if $r \geq 1$ then $r^{2}>r$ and $\frac{1}{r^{2}} \leq \frac{1}{r}$.
We have that $r \geq 1>0$, thus by Axiom 12 and $r>0$ we have that $r \cdot r \geq 1 \cdot r$.
Now, since $r \geq 1>0$ we also have that $\frac{1}{r}>0$. So again we can apply Axiom 12 and multiply the inequality $r \geq 1$ across by $\frac{1}{r}$ twice. This gives $r \cdot \frac{1}{r} \geq 1 \cdot \frac{1}{r}$ and $r \cdot \frac{1}{r} \cdot \frac{1}{r} \geq 1 \cdot \frac{1}{r} \cdot \frac{1}{r}$. Simplifying gives the desired result.

