Please answer the questions below and either turn in a paper copy in-person or make a quality scan into a single pdf and submit via email or Blackboard.

1. Prove Part (f) of Theorem 1.7.2.

Solution:

Given that F is a field and $a \in F$, prove that -(-a) = a.

We have that $a \in F$ implies $-(a) \in F$ which in turn implies $-(-a) \in F$ since F contains additive inverses for all its elements. Now we have that a + (-a) = 0 and we also have that -(-a) + (-a) = 0 since we are working with additive inverses. So we have that -(-a) + (-a) = a + (-a), and that we can add a to both sides to get (-(-a) + (-a)) + a = (a + (-a)) + a. And by associativity we get -(-a) + ((-a) + a) = a + ((-a) + a). Finally this simplifies to -(-a) + 0 = a + 0, and thus -(-a) = a as desired.

2. Prove Part (b) of Theorem 1.7.4.

<u>Solution:</u>

Given $a, b, c \in F$ and c < 0, prove that ac > bc.

By Theorem 1.7.4(a) we know that -c > -0 and from previous work that -0 = 0. Now we apply Axiom 12 to -c. This gives us that $a \cdot (-c) < b \cdot (-c)$. By commutivity, associativity, and Theorem 1.7.2(d), we can write this as -(ac) < -(bc). But again by part (a) of this same theorem, this inequality is true if and only if ac > bc.

3. Section 1.7 Exercise 3 (b).

Solution:

Prove that 0 < 1.

By trichotomy (Axiom 9), we have 0 < 1, 0 = 1 or 0 > 1. We cannot have 0 = 1 since Axiom 6 says that the additive and multiplicative identities must be distinct. If 0 > 1, then by Axiom 12 we have that for any c > 0, $0 \cdot c > 1 \cdot c = c$, but this implies that 0 > c which is a contradiction since c cannot be simultaneously greater than and less than zero. So the only possibility is that 0 < 1.

Now it could be that there are no such c satisfying $c \neq 1$ with c > 0. Since we have $1 \in F$, we automatically have $-1 \in F$, and if 1 < 0, then -1 > 0, so that we do indeed have at least one "positive" element in F. Our proof implies that this positive element is also negative, which is a contradiction.

4. Section 1.7 Exercise 5.

<u>Solution:</u>

Prove that if $r \ge 1$ then $r^2 > r$ and $\frac{1}{r^2} \le \frac{1}{r}$.

We have that $r \ge 1 > 0$, thus by Axiom 12 and r > 0 we have that $r \cdot r \ge 1 \cdot r$.

Now, since $r \ge 1 > 0$ we also have that $\frac{1}{r} > 0$. So again we can apply Axiom 12 and multiply the inequality $r \ge 1$ across by $\frac{1}{r}$ twice. This gives $r \cdot \frac{1}{r} \ge 1 \cdot \frac{1}{r}$ and $r \cdot \frac{1}{r} \cdot \frac{1}{r} \ge 1 \cdot \frac{1}{r} \cdot \frac{1}{r}$. Simplifying gives the desired result.