MATH 413 - Real Analysis I - Fall 2020 - HW 04

Please answer the questions below and either turn in a paper copy in-person or make a quality scan into a single pdf and submit via email or Blackboard.

Name the pdf file: hw04_math413_lastname.pdf with "lastname" of course replaced by your last name.

1. Section 2.3, Exercise 3(a)
2. Section 2.4, Exercise 2. Also: give an example of a converging sequence that does attain its maximum. You do not need to prove your results, but give some argument.
3. Section 2.4, Exercise 5
4. Consider the sequence defined by $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+1}+1$ for all $n \geq 1$. Prove that this sequence converges and find its limit. (Hint: use monotone convergence. Induction may be helpful to show the sequence is bounded and increasing.)
5. Section 2.5, Exercise 11
6. (a) Consider the sequence

$$
a_{n}= \begin{cases}(-1)^{n}+3 & \text { when } n \text { is a multiple of } 5 \\ \frac{1}{n} & \text { otherwise }\end{cases}
$$

Find $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$.
(b) Now consider the subsequence $b_{n}=a_{5 n}$ for $n \in \mathbb{N}$. Find $\limsup _{n \rightarrow \infty} b_{n}$ and $\liminf _{n \rightarrow \infty} b_{n}$.
7. (optional) Prove the following theorem about "swapping the order" of strictly increasing convergent sequences.

Theorem. Let a_{n} and b_{n} be two strictly increasing sequences converging to the same limit and satisfying $a_{n}<b_{n}$ for all n. Prove that the exists a subsequence of $a_{n}, c_{n}=a_{f(n)}$ that satisfies $b_{n}<c_{n}$ for all n.

