MATH 413 — Real Analysis I — Fall 2020 - HW 03

Please answer the questions below and either turn in a paper copy in-person or make
a quality scan into a single pdf and submit via email or Blackboard.
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1. Prove that —"55; converges.

Solution:

Given any € > 0, choose any natural number n* > max{10, % + 101}. Then for any n > n*
we have that

n? | 101
n? —101 - |n2—101
101
= 01 (since n > n* > 10)
n —_—

101
< )2 101 (since n > n* > 10)

)2 —

101 101
< 5 (since n* >4/ — +101)
(/22 +101 )" — 101 ‘
=€

2
n
Thus we can make nZ_101

1’ < € eventually true regardless of the choice for € > 0. Therefore

n
77 converges to 1.

2. Section 2.1, Exercise 8.

Solution:

Suppose that {a,} and {b,} are two sequences with b,, — 0. If there exist constants A and k
and a positive integer n* such that |a, — A| < k|by,| for all n > n*, prove that the sequence {a, }
must converge to A.

Since b, — 0 and that there exist constants A and k and a positive integer n* such that
|an, — A| < k|by| for all n > n*. This says that the sequence is sort of getting close to A since by,
is converging to zero, then |b,| is eventually getting small. Thus k|b,| is eventually getting small.

Proof. Let ¢ > 0. Assume Since b, — 0. Now suppose that there exist constants A and k and
a positive integer n; such that |a, — A| < k|b,| for all n > n;. Since b, — 0 and k > 0, then
for any € > 0 we can find an ny such that n > ny implies that [b,| < ; (because €k is a positive
number). Now choose any n* > max{ni, na}.

Now for all n > n* we have that |a, — A| < k|b,| < k- { = €. Thus a, — A.



3. Section 2.1, Exercise 11. No need to prove your example, just give an example. Provide at least some
explanation of why it is bounded but doesn’t converge.

Solution:

Example 1: a, = (—1)"a + b for any a,b € R such that a # 0 is bounded but not convergent
since |a,| < |a| + |b] and a,, will hit a + b and —a + b infinitely many times and these quantities
are distinct since a # 0.

Example 2: a, = sin(n). This is a complicated sequence actually! Intuitively, you might
guess that it bounces around between —1 and 1 and so it is bounded. Proving it doesn’t
converge is actually very complicated though. In fact, {sin(n) | n € N} is dense in
[—1,1]. This means that we can find an n where sin(n) is as close as we want to any real
number in [—1,1]. This implies that a, will never converge as it will get arbitrarily close to
every number in [—1, 1] infinitely many times! Do an online search for “density of sine function”.

Example 3: Here is a funny example just to show that we can construct sequences in interesting
ways:
when n is an odd prime

for n even

ap — 2

1
1
n
n for n odd, but not prime, and n < 100
0

for n odd, but not prime, and n > 100,
We certainly have 0 < a,, < 100% so a, is bounded, but there are infinitely primes so a, = 1

for infinitely many n, and there are infinitely many non-prime odd numbers beyond 100 as well,
thus a,, = 0 infinitely many times. Therefore a,, cannot converge.

4. Section 2.1, Exercise 12.

If the sequence a, converges to a nonzero constant A and a, # 0, for any n, prove that the
sequence é is bounded.

Proof. Assume a,, - A # 0 and that a,, # 0 for all n € N. Then we know that a% is defined
(and nonzero) for all n.

Case I: Assume A > 0 and let € = % > 0. Then we know there is an n* such that n > n*

implies that |a, — A| < é. This implies that 0 < % <ap < 3% for all n > n*. In other words

we have that 0 < g < an| < 3% for all n > n* and dividing and rearranging gives 3% < ﬁ
P} n

1 1 1 1 1 _ 2 1 2
and m < g, i.e. that g < m < g = A Thus we have that ‘a‘ < a for all n Z n*.
Now we know that {|a1],|az|,...,|an-—1]} is a finite list of positive numbers and thus is bounded
from above and below. Let m = min,<,«{|ay|} and M = max,<p+{|a,|}. Note that m > 0 and

M > 0 since |a,| # 0 for all n. So we have that 0 < m < |a,| < M forn =1,2,...,n* — 1. This
also gives that 0 < ﬁ < ‘i‘ S% forn=1,2,...,n* — 1.

So we have that ‘ai‘ < % for n > n* and that ‘ai} < % for n < n*. Let K = max{%,%}. Note

that K > 0, and we have that )é‘ < K for all n € N. Thus é is bounded.



5. Prove Theorem 2.2.1, part (d).

Solution:

First note that for any p € N we have that
p—1
W -y = (x—y) Yy Y
k=0

which can be proved by induction.

Assume that a,, — A. Then we know that a,, is bounded by some M, i.e. that |a,| < M for all
n. Then we have that

p—1
Z ag_l_kAk
k=0

Let C' = Y_0—0 MP=1AP~L.

p—1 p—1
<D lanfPHAPT <Y M AP
k=0 k=0

Now let € > 0, thus we have that 5 > 0. Since a,, — A we can find an n* € N such that for any
n > n* we have that |a, — A| < &.
Now finally for any n > n* we have that

|(an)? — AP = |an — A -

p—1
p—1—k 7k
E ab A
k=0

<l|a, —A|-C

This proves that a}, converges to AP.

Note that we can strengthen this result to say that a,, = A if and only if a], -+ A" for any » € R
with 7 > 0 when A > 0 and a,, > 0 for all n. If » < 0, then we also require that a,, # 0 for all
n. This is a bit trickier of an argument, but we will see later that it is related to the fact that
power functions like f(z) = 2" are continuous.



6. Section 2.2, Exercise 19.

Solution:

antl " If b, converges to zero, prove that a,
n

Consider the sequences a,, and b,, where b, = i
converges to —1.

Proof. Note that solving for a,, gives a,, = S"J_rl. Since b,, — 0, we can choose an n; such that
|bn| < % for all n > mny. This implies that —% <b, < % and thus —% <b,—1< —%, or in other
words that 1 < |b, — 1| < 3. Also this implies that % < ﬁ < 2.

Now let € > 0 and choose some ng such that for all n > ng we have |b,| < i. Now choose any
n* > max{ni,ny}. Then we have that for any n > n*

lan, — (=1)| = |an + 1
B!
b, —1
2by, ‘

+1‘

b, —1

:2.’[)”‘.

Thus no matter what we are given for € > 0, we can choose a cut-off n* such that |a, —(—1)| <€
when n > n*. This implies that a,, — —1.



7. You are given that x,, converges to x and that y,, is bounded. Prove that x, + %” converges to .
Solution:

Since y,, is bounded, then there is a real number M such that |y,| < M for all n. Thus by the
triangle inequality we have that

Yn

M
xn+f—x‘:(mn—m)+f§|a}n—a}|+ <€+ —
n n n

Yn
n

Now we just need to figure out how to get rid of the % we can do this as follows.

Proof. Let € > 0. We have that y,, is bounded by M > 0. Choose any nj such that an < €.

Note that now n > n; implies that % < an < €.

Now we also have that 0 < € — an So choose some ny such that n > ns implies that
|z, — x| <e—nM1. We can do this since0<e—nM1 and z, — x.

Now choose any n* > max{ni,ns}. Thus for any n > n* we have that

‘(xn—i-y;n)—x’:’(xn—x)—i-yfn

n
< |zp — x| + Un (triangle inequality)
M
<l|zp — x|+ — (since |y,| < M)
n
M\ M _ .
<le—— )+ — (since n > n* > ng)
ny n
M M . *
<le—— )+ — (since n > n* > ny)
niy niy

Thus we have that x,, + yf — .

8. Finish the proof of Theorem 2.3.6.

Solution:

THEOREM 2.3.6. Consider a sequence a,,, where a, > 0 for all n. Then a,, diverges to 400 if

and only if the sequence -

2. converges to zero.

The textbook contains a proof of the (=) direction, that

ap — +00 = — —0.
an
We prove the other direction here,
1
ap — +00 <= — —0.
Qn,

Proof. (<) Suppose a% — 0. Note that a, # 0 is required for the sequence i to be defined.
1

Let M > 0, then ¢ = 3; > 0 also. Then there is an n* such that n > n* implies that
1

a i < € = 7. This shows that n > n* implies that |a,| > M.

Since we have just show that for any arbitrary positive real number M, we can show that,
eventually, the sequence a,, > M. This means that a,, diverges to +o0.



