
MATH 413 – Real Analysis I – Fall 2020 – HW 03

Please answer the questions below and either turn in a paper copy in-person or make
a quality scan into a single pdf and submit via email or Blackboard.

1. Prove that n2

n2−101 converges.

Solution:

Given any ε > 0, choose any natural number n∗ > max{10,
√

101
ε + 101}. Then for any n ≥ n∗

we have that∣∣∣∣ n2

n2 − 101
− 1

∣∣∣∣ =

∣∣∣∣ 101

n2 − 101

∣∣∣∣
=

101

n2 − 101
(since n ≥ n∗ > 10)

≤ 101

(n∗)2 − 101
(since n ≥ n∗ > 10)

<
101(√

101
ε + 101

)2
− 101

(since n∗ >

√
101

ε
+ 101)

= ε

Thus we can make
∣∣∣ n2

n2−101 − 1
∣∣∣ < ε eventually true regardless of the choice for ε > 0. Therefore

n2

n2−101 converges to 1.

2. Section 2.1, Exercise 8.

Solution:

Suppose that {an} and {bn} are two sequences with bn → 0. If there exist constants A and k
and a positive integer n∗ such that |an−A| < k|bn| for all n ≥ n∗, prove that the sequence {an}
must converge to A.

Since bn → 0 and that there exist constants A and k and a positive integer n∗ such that
|an−A| < k|bn| for all n ≥ n∗. This says that the sequence is sort of getting close to A since bn
is converging to zero, then |bn| is eventually getting small. Thus k|bn| is eventually getting small.

Proof. Let ε > 0. Assume Since bn → 0. Now suppose that there exist constants A and k and
a positive integer n1 such that |an − A| < k|bn| for all n ≥ n1. Since bn → 0 and k > 0, then
for any ε > 0 we can find an n2 such that n ≥ n2 implies that |bn| < ε

k (because εk is a positive
number). Now choose any n∗ ≥ max{n1, n2}.

Now for all n ≥ n∗ we have that |an −A| < k|bn| < k · εk = ε. Thus an → A.
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3. Section 2.1, Exercise 11. No need to prove your example, just give an example. Provide at least some
explanation of why it is bounded but doesn’t converge.

Solution:

Example 1: an = (−1)na + b for any a, b ∈ R such that a 6= 0 is bounded but not convergent
since |an| ≤ |a|+ |b| and an will hit a+ b and −a+ b infinitely many times and these quantities
are distinct since a 6= 0.

Example 2: an = sin(n). This is a complicated sequence actually! Intuitively, you might
guess that it bounces around between −1 and 1 and so it is bounded. Proving it doesn’t
converge is actually very complicated though. In fact, {sin(n) | n ∈ N} is dense in
[−1, 1]. This means that we can find an n where sin(n) is as close as we want to any real
number in [−1, 1]. This implies that an will never converge as it will get arbitrarily close to
every number in [−1, 1] infinitely many times! Do an online search for “density of sine function”.

Example 3: Here is a funny example just to show that we can construct sequences in interesting
ways:

an =


1 when n is an odd prime
1
n for n even

n2 for n odd, but not prime, and n ≤ 100

0 for n odd, but not prime, and n > 100,

We certainly have 0 ≤ an ≤ 1002 so an is bounded, but there are infinitely primes so an = 1
for infinitely many n, and there are infinitely many non-prime odd numbers beyond 100 as well,
thus an = 0 infinitely many times. Therefore an cannot converge.

4. Section 2.1, Exercise 12.

Solution:

If the sequence an converges to a nonzero constant A and an 6= 0, for any n, prove that the
sequence 1

an
is bounded.

Proof. Assume an → A 6= 0 and that an 6= 0 for all n ∈ N. Then we know that 1
an

is defined
(and nonzero) for all n.

Case I: Assume A > 0 and let ε = A
2 > 0. Then we know there is an n∗ such that n ≥ n∗

implies that |an − A| < A
2 . This implies that 0 < A

2 < an < 3A2 for all n ≥ n∗. In other words
we have that 0 < A

2 < |an| < 3A2 for all n ≥ n∗ and dividing and rearranging gives 1
3A

2

< 1
|an|

and 1
|an| <

1
A
2

, i.e. that 1
3A

2

< 1
|an| <

1
A
2

= 2
A . Thus we have that

∣∣∣ 1
an

∣∣∣ < 2
A for all n ≥ n∗.

Now we know that {|a1|, |a2|, . . . , |an∗−1|} is a finite list of positive numbers and thus is bounded
from above and below. Let m = minn<n∗{|an|} and M = maxn<n∗{|an|}. Note that m > 0 and
M > 0 since |an| 6= 0 for all n. So we have that 0 < m ≤ |an| ≤M for n = 1, 2, . . . , n∗− 1. This

also gives that 0 < 1
M ≤

∣∣∣ 1
an

∣∣∣ ≤ 1
m for n = 1, 2, . . . , n∗ − 1.

So we have that
∣∣∣ 1
an

∣∣∣ ≤ 2
A for n ≥ n∗ and that

∣∣∣ 1
an

∣∣∣ ≤ 1
m for n < n∗. Let K = max{ 2A ,

1
m}. Note

that K > 0, and we have that
∣∣∣ 1
an

∣∣∣ ≤ K for all n ∈ N. Thus 1
an

is bounded.
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5. Prove Theorem 2.2.1, part (d).

Solution:

First note that for any p ∈ N we have that

xp − yp = (x− y)

p−1∑
k=0

xp−1−kyk

which can be proved by induction.

Assume that an → A. Then we know that an is bounded by some M , i.e. that |an| ≤M for all
n. Then we have that∣∣∣∣∣

p−1∑
k=0

ap−1−kn Ak

∣∣∣∣∣ ≤
p−1∑
k=0

|an|p−1|A|p−1 ≤
p−1∑
k=0

Mp−1|A|p−1

Let C =
∑p−1

k=0M
p−1|A|p−1.

Now let ε > 0, thus we have that ε
C > 0. Since an → A we can find an n∗ ∈ N such that for any

n ≥ n∗ we have that |an −A| < ε
C .

Now finally for any n ≥ n∗ we have that

|(an)p −Ap| = |an −A| ·

∣∣∣∣∣
p−1∑
k=0

ap−1−kn Ak

∣∣∣∣∣
≤ |an −A| · C

<
ε

C
· C = ε

This proves that apn converges to Ap.

Note that we can strengthen this result to say that an → A if and only if arn → Ar for any r ∈ R
with r ≥ 0 when A ≥ 0 and an ≥ 0 for all n. If r < 0, then we also require that an 6= 0 for all
n. This is a bit trickier of an argument, but we will see later that it is related to the fact that
power functions like f(x) = xr are continuous.
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6. Section 2.2, Exercise 19.

Solution:

Consider the sequences an and bn, where bn = an+1
an−1 . If bn converges to zero, prove that an

converges to −1.

Proof. Note that solving for an gives an = bn+1
bn−1 . Since bn → 0, we can choose an n1 such that

|bn| < 1
2 for all n ≥ n1. This implies that −1

2 < bn <
1
2 and thus −3

2 < bn − 1 < −1
2 , or in other

words that 1
2 < |bn − 1| < 3

2 . Also this implies that 2
3 <

1
|bn−1| < 2.

Now let ε > 0 and choose some n2 such that for all n ≥ n2 we have |bn| < ε
4 . Now choose any

n∗ ≥ max{n1, n2}. Then we have that for any n ≥ n∗

|an − (−1)| = |an + 1|

=

∣∣∣∣bn + 1

bn − 1
+ 1

∣∣∣∣
=

∣∣∣∣ 2bn
bn − 1

∣∣∣∣
= 2 · |bn| ·

∣∣∣∣ 1

bn − 1

∣∣∣∣
< 2 · ε

4
· 2 = ε

Thus no matter what we are given for ε > 0, we can choose a cut-off n∗ such that |an−(−1)| < ε
when n ≥ n∗. This implies that an → −1.
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7. You are given that xn converges to x and that yn is bounded. Prove that xn + yn
n converges to x.

Solution:

Since yn is bounded, then there is a real number M such that |yn| ≤ M for all n. Thus by the
triangle inequality we have that∣∣∣xn +

yn
n
− x
∣∣∣ =

∣∣∣(xn − x) +
yn
n

∣∣∣ ≤ |xn − x|+ ∣∣∣yn
n

∣∣∣ < ε+
M

n

Now we just need to figure out how to get rid of the M
n . we can do this as follows.

Proof. Let ε > 0. We have that yn is bounded by M > 0. Choose any n1 such that M
n1

< ε.

Note that now n ≥ n1 implies that M
n ≤

M
n1
< ε.

Now we also have that 0 < ε − M
n1

. So choose some n2 such that n ≥ n2 implies that

|xn − x| < ε− M
n1

. We can do this since 0 < ε− M
n1

and xn → x.

Now choose any n∗ ≥ max{n1, n2}. Thus for any n ≥ n∗ we have that∣∣∣(xn +
yn
n

)
− x
∣∣∣ =

∣∣∣(xn − x) +
yn
n

∣∣∣
≤ |xn − x|+

∣∣∣yn
n

∣∣∣ (triangle inequality)

≤ |xn − x|+
M

n
(since |yn| ≤M)

<

(
ε− M

n1

)
+
M

n
(since n ≥ n∗ ≥ n2)

≤
(
ε− M

n1

)
+
M

n1
(since n ≥ n∗ ≥ n1)

= ε

Thus we have that xn + yn
n → x.

8. Finish the proof of Theorem 2.3.6.

Solution:

THEOREM 2.3.6. Consider a sequence an, where an > 0 for all n. Then an diverges to +∞ if
and only if the sequence 1

an
converges to zero.

The textbook contains a proof of the (⇒) direction, that

an → +∞ =⇒ 1

an
→ 0.

We prove the other direction here,

an → +∞ ⇐=
1

an
→ 0.

Proof. (⇐) Suppose 1
an
→ 0. Note that an 6= 0 is required for the sequence 1

an
to be defined.

Let M > 0, then ε = 1
M > 0 also. Then there is an n∗ such that n ≥ n∗ implies that

1
an

=
∣∣∣ 1
an

∣∣∣ < ε = 1
M . This shows that n ≥ n∗ implies that |an| > M .

Since we have just show that for any arbitrary positive real number M , we can show that,
eventually, the sequence an > M . This means that an diverges to +∞.
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