Please answer the questions below and either turn in a paper copy in-person or make a quality scan into a single pdf and submit via email or Blackboard.

1. Prove that $\frac{n^{2}}{n^{2}-101}$ converges.

Solution:

Given any $\epsilon>0$, choose any natural number $n^{*}>\max \left\{10, \sqrt{\frac{101}{\epsilon}+101}\right\}$. Then for any $n \geq n^{*}$ we have that

$$
\begin{array}{rlr}
\left|\frac{n^{2}}{n^{2}-101}-1\right| & =\left|\frac{101}{n^{2}-101}\right| & \\
& =\frac{101}{n^{2}-101} & \left(\text { since } n \geq n^{*}>10\right) \\
& \leq \frac{101}{\left(n^{*}\right)^{2}-101} & \left(\text { since } n \geq n^{*}>10\right) \\
& <\frac{101}{\left(\sqrt{\frac{101}{\epsilon}+101}\right)^{2}-101} & \left(\text { since } n^{*}>\sqrt{\left.\frac{101}{\epsilon}+101\right)}\right. \\
& =\epsilon &
\end{array}
$$

Thus we can make $\left|\frac{n^{2}}{n^{2}-101}-1\right|<\epsilon$ eventually true regardless of the choice for $\epsilon>0$. Therefore $\frac{n^{2}}{n^{2}-101}$ converges to 1 .

2. Section 2.1, Exercise 8.

Solution:

Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences with $b_{n} \rightarrow 0$. If there exist constants A and k and a positive integer n^{*} such that $\left|a_{n}-A\right|<k\left|b_{n}\right|$ for all $n \geq n^{*}$, prove that the sequence $\left\{a_{n}\right\}$ must converge to A.

Since $b_{n} \rightarrow 0$ and that there exist constants A and k and a positive integer n^{*} such that $\left|a_{n}-A\right|<k\left|b_{n}\right|$ for all $n \geq n^{*}$. This says that the sequence is sort of getting close to A since b_{n} is converging to zero, then $\left|b_{n}\right|$ is eventually getting small. Thus $k\left|b_{n}\right|$ is eventually getting small.

Proof. Let $\epsilon>0$. Assume Since $b_{n} \rightarrow 0$. Now suppose that there exist constants A and k and a positive integer n_{1} such that $\left|a_{n}-A\right|<k\left|b_{n}\right|$ for all $n \geq n_{1}$. Since $b_{n} \rightarrow 0$ and $k>0$, then for any $\epsilon>0$ we can find an n_{2} such that $n \geq n_{2}$ implies that $\left|b_{n}\right|<\frac{\epsilon}{k}$ (because ϵk is a positive number). Now choose any $n^{*} \geq \max \left\{n_{1}, n_{2}\right\}$.

Now for all $n \geq n^{*}$ we have that $\left|a_{n}-A\right|<k\left|b_{n}\right|<k \cdot \frac{\epsilon}{k}=\epsilon$. Thus $a_{n} \rightarrow A$.
3. Section 2.1, Exercise 11. No need to prove your example, just give an example. Provide at least some explanation of why it is bounded but doesn't converge.

Solution:

Example 1: $a_{n}=(-1)^{n} a+b$ for any $a, b \in \mathbb{R}$ such that $a \neq 0$ is bounded but not convergent since $\left|a_{n}\right| \leq|a|+|b|$ and a_{n} will hit $a+b$ and $-a+b$ infinitely many times and these quantities are distinct since $a \neq 0$.

Example 2: $a_{n}=\sin (n)$. This is a complicated sequence actually! Intuitively, you might guess that it bounces around between -1 and 1 and so it is bounded. Proving it doesn't converge is actually very complicated though. In fact, $\{\sin (n) \mid n \in \mathbb{N}\}$ is dense in $[-1,1]$. This means that we can find an n where $\sin (n)$ is as close as we want to any real number in $[-1,1]$. This implies that a_{n} will never converge as it will get arbitrarily close to every number in $[-1,1]$ infinitely many times! Do an online search for "density of sine function".

Example 3: Here is a funny example just to show that we can construct sequences in interesting ways:

$$
a_{n}= \begin{cases}1 & \text { when } n \text { is an odd prime } \\ \frac{1}{n} & \text { for } n \text { even } \\ n^{2} & \text { for } n \text { odd, but not prime, and } n \leq 100 \\ 0 & \text { for } n \text { odd, but not prime, and } n>100\end{cases}
$$

We certainly have $0 \leq a_{n} \leq 100^{2}$ so a_{n} is bounded, but there are infinitely primes so $a_{n}=1$ for infinitely many n, and there are infinitely many non-prime odd numbers beyond 100 as well, thus $a_{n}=0$ infinitely many times. Therefore a_{n} cannot converge.

4. Section 2.1, Exercise 12.

Solution:

If the sequence a_{n} converges to a nonzero constant A and $a_{n} \neq 0$, for any n, prove that the sequence $\frac{1}{a_{n}}$ is bounded.

Proof. Assume $a_{n} \rightarrow A \neq 0$ and that $a_{n} \neq 0$ for all $n \in \mathbb{N}$. Then we know that $\frac{1}{a_{n}}$ is defined (and nonzero) for all n.

Case I: Assume $A>0$ and let $\epsilon=\frac{A}{2}>0$. Then we know there is an n^{*} such that $n \geq n^{*}$ implies that $\left|a_{n}-A\right|<\frac{A}{2}$. This implies that $0<\frac{A}{2}<a_{n}<3 \frac{A}{2}$ for all $n \geq n^{*}$. In other words we have that $0<\frac{A}{2}<\left|a_{n}\right|<3 \frac{A}{2}$ for all $n \geq n^{*}$ and dividing and rearranging gives $\frac{1}{3 \frac{A}{2}}<\frac{1}{\left|a_{n}\right|}$ and $\frac{1}{\left|a_{n}\right|}<\frac{1}{\frac{A}{2}}$, i.e. that $\frac{1}{3 \frac{A}{2}}<\frac{1}{\left|a_{n}\right|}<\frac{1}{\frac{A}{2}}=\frac{2}{A}$. Thus we have that $\left|\frac{1}{a_{n}}\right|<\frac{2}{A}$ for all $n \geq n^{*}$.

Now we know that $\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n^{*}-1}\right|\right\}$ is a finite list of positive numbers and thus is bounded from above and below. Let $m=\min _{n<n^{*}}\left\{\left|a_{n}\right|\right\}$ and $M=\max _{n<n^{*}}\left\{\left|a_{n}\right|\right\}$. Note that $m>0$ and $M>0$ since $\left|a_{n}\right| \neq 0$ for all n. So we have that $0<m \leq\left|a_{n}\right| \leq M$ for $n=1,2, \ldots, n^{*}-1$. This also gives that $0<\frac{1}{M} \leq\left|\frac{1}{a_{n}}\right| \leq \frac{1}{m}$ for $n=1,2, \ldots, n^{*}-1$.
So we have that $\left|\frac{1}{a_{n}}\right| \leq \frac{2}{A}$ for $n \geq n^{*}$ and that $\left|\frac{1}{a_{n}}\right| \leq \frac{1}{m}$ for $n<n^{*}$. Let $K=\max \left\{\frac{2}{A}, \frac{1}{m}\right\}$. Note that $K>0$, and we have that $\left|\frac{1}{a_{n}}\right| \leq K$ for all $n \in \mathbb{N}$. Thus $\frac{1}{a_{n}}$ is bounded.
5. Prove Theorem 2.2.1, part (d).

Solution:

First note that for any $p \in \mathbb{N}$ we have that

$$
x^{p}-y^{p}=(x-y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}
$$

which can be proved by induction.
Assume that $a_{n} \rightarrow A$. Then we know that a_{n} is bounded by some M, i.e. that $\left|a_{n}\right| \leq M$ for all n. Then we have that

$$
\left|\sum_{k=0}^{p-1} a_{n}^{p-1-k} A^{k}\right| \leq \sum_{k=0}^{p-1}\left|a_{n}\right|^{p-1}|A|^{p-1} \leq \sum_{k=0}^{p-1} M^{p-1}|A|^{p-1}
$$

Let $C=\sum_{k=0}^{p-1} M^{p-1}|A|^{p-1}$.
Now let $\epsilon>0$, thus we have that $\frac{\epsilon}{C}>0$. Since $a_{n} \rightarrow A$ we can find an $n^{*} \in \mathbb{N}$ such that for any $n \geq n^{*}$ we have that $\left|a_{n}-A\right|<\frac{\epsilon}{C}$.
Now finally for any $n \geq n^{*}$ we have that

$$
\begin{aligned}
\left|\left(a_{n}\right)^{p}-A^{p}\right| & =\left|a_{n}-A\right| \cdot\left|\sum_{k=0}^{p-1} a_{n}^{p-1-k} A^{k}\right| \\
& \leq\left|a_{n}-A\right| \cdot C \\
& <\frac{\epsilon}{C} \cdot C=\epsilon
\end{aligned}
$$

This proves that a_{n}^{p} converges to A^{p}.
Note that we can strengthen this result to say that $a_{n} \rightarrow A$ if and only if $a_{n}^{r} \rightarrow A^{r}$ for any $r \in \mathbb{R}$ with $r \geq 0$ when $A \geq 0$ and $a_{n} \geq 0$ for all n. If $r<0$, then we also require that $a_{n} \neq 0$ for all n. This is a bit trickier of an argument, but we will see later that it is related to the fact that power functions like $f(x)=x^{r}$ are continuous.
6. Section 2.2, Exercise 19.

Solution:

Consider the sequences a_{n} and b_{n}, where $b_{n}=\frac{a_{n}+1}{a_{n}-1}$. If b_{n} converges to zero, prove that a_{n} converges to -1 .

Proof. Note that solving for a_{n} gives $a_{n}=\frac{b_{n}+1}{b_{n}-1}$. Since $b_{n} \rightarrow 0$, we can choose an n_{1} such that $\left|b_{n}\right|<\frac{1}{2}$ for all $n \geq n_{1}$. This implies that $-\frac{1}{2}<b_{n}<\frac{1}{2}$ and thus $-\frac{3}{2}<b_{n}-1<-\frac{1}{2}$, or in other words that $\frac{1}{2}<\left|b_{n}-1\right|<\frac{3}{2}$. Also this implies that $\frac{2}{3}<\frac{1}{\left|b_{n}-1\right|}<2$.

Now let $\epsilon>0$ and choose some n_{2} such that for all $n \geq n_{2}$ we have $\left|b_{n}\right|<\frac{\epsilon}{4}$. Now choose any $n^{*} \geq \max \left\{n_{1}, n_{2}\right\}$. Then we have that for any $n \geq n^{*}$

$$
\begin{aligned}
\left|a_{n}-(-1)\right| & =\left|a_{n}+1\right| \\
& =\left|\frac{b_{n}+1}{b_{n}-1}+1\right| \\
& =\left|\frac{2 b_{n}}{b_{n}-1}\right| \\
& =2 \cdot\left|b_{n}\right| \cdot\left|\frac{1}{b_{n}-1}\right| \\
& <2 \cdot \frac{\epsilon}{4} \cdot 2=\epsilon
\end{aligned}
$$

Thus no matter what we are given for $\epsilon>0$, we can choose a cut-off n^{*} such that $\left|a_{n}-(-1)\right|<\epsilon$ when $n \geq n^{*}$. This implies that $a_{n} \rightarrow-1$.
7. You are given that x_{n} converges to x and that y_{n} is bounded. Prove that $x_{n}+\frac{y_{n}}{n}$ converges to x.

Solution:

Since y_{n} is bounded, then there is a real number M such that $\left|y_{n}\right| \leq M$ for all n. Thus by the triangle inequality we have that

$$
\left|x_{n}+\frac{y_{n}}{n}-x\right|=\left|\left(x_{n}-x\right)+\frac{y_{n}}{n}\right| \leq\left|x_{n}-x\right|+\left|\frac{y_{n}}{n}\right|<\epsilon+\frac{M}{n}
$$

Now we just need to figure out how to get rid of the $\frac{M}{n}$. we can do this as follows.
Proof. Let $\epsilon>0$. We have that y_{n} is bounded by $M>0$. Choose any n_{1} such that $\frac{M}{n_{1}}<\epsilon$. Note that now $n \geq n_{1}$ implies that $\frac{M}{n} \leq \frac{M}{n_{1}}<\epsilon$.

Now we also have that $0<\epsilon-\frac{M}{n_{1}}$. So choose some n_{2} such that $n \geq n_{2}$ implies that $\left|x_{n}-x\right|<\epsilon-\frac{M}{n_{1}}$. We can do this since $0<\epsilon-\frac{M}{n_{1}}$ and $x_{n} \rightarrow x$.

Now choose any $n^{*} \geq \max \left\{n_{1}, n_{2}\right\}$. Thus for any $n \geq n^{*}$ we have that

$$
\begin{array}{rlr}
\left|\left(x_{n}+\frac{y_{n}}{n}\right)-x\right| & =\left|\left(x_{n}-x\right)+\frac{y_{n}}{n}\right| & \\
& \leq\left|x_{n}-x\right|+\left|\frac{y_{n}}{n}\right| & \\
& \text { (triangle inequality) } \\
& \leq\left|x_{n}-x\right|+\frac{M}{n} & \\
& <\left(\text { since }\left|y_{n}\right| \leq M\right) \\
& \leq\left(\epsilon-\frac{M}{n_{1}}\right)+\frac{M}{n} & \\
\left(\text { since } n \geq n^{*} \geq n_{2}\right) \\
& =\epsilon &
\end{array}
$$

Thus we have that $x_{n}+\frac{y_{n}}{n} \rightarrow x$.
8. Finish the proof of Theorem 2.3.6.

Solution:

THEOREM 2.3.6. Consider a sequence a_{n}, where $a_{n}>0$ for all n. Then a_{n} diverges to $+\infty$ if and only if the sequence $\frac{1}{a_{n}}$ converges to zero.

The textbook contains a proof of the (\Rightarrow) direction, that

$$
a_{n} \rightarrow+\infty \quad \Longrightarrow \quad \frac{1}{a_{n}} \rightarrow 0
$$

We prove the other direction here,

$$
a_{n} \rightarrow+\infty \Longleftarrow \frac{1}{a_{n}} \rightarrow 0
$$

Proof. (\Leftarrow) Suppose $\frac{1}{a_{n}} \rightarrow 0$. Note that $a_{n} \neq 0$ is required for the sequence $\frac{1}{a_{n}}$ to be defined. Let $M>0$, then $\epsilon=\frac{1}{M}>0$ also. Then there is an n^{*} such that $n \geq n^{*}$ implies that $\frac{1}{a_{n}}=\left|\frac{1}{a_{n}}\right|<\epsilon=\frac{1}{M}$. This shows that $n \geq n^{*}$ implies that $\left|a_{n}\right|>M$.

Since we have just show that for any arbitrary positive real number M, we can show that, eventually, the sequence $a_{n}>M$. This means that a_{n} diverges to $+\infty$.

