MATH 413 — QUIZ 1 — Fall 2020 || 50 POINTS

SOLUTIONS

1. (5 pts) Consider the number system R = R\ {/2} with mathematical operations the same as for R. Is this
number system a complete ordered field? Explain why or why not. You do not need to write a proof, but you should
show some careful reasoning.

Solution:

Completeness requires that any nonempty subset of R that is bounded above has a supremum that is
also in R. We have already seen that S = {g € Q | 0 < ¢* < 2} C Q C R is nonempty and bounded above
and that sup S = v/2 € R. Note that S C R also! Removing \/§~from R to create R did not affect set S
at alll So S is still nonempty and bounded above as a subset of R, thus if R is complete, then sup S € R.
But we know that if b = sup S, then b?> = 2 and b > 0. Our modified number system R has a “hole” at
V2 2 though so that there is no b € R with b > 0 such that b2 = 2. Of course we still have V2 e R but
that is of no consequence. Since we have a nonempty and bounded above subset of R whose supremum
is not a member of R, we conclude that R is NOT complete.

Note that we did not even discuss whether or not R even s~atisﬁes all field and order axioms. Ianact R
is not even an ordered field at alll Note that v/2 — 1,1 € R and thus V2 -1 +1 should be in R if we
wanted it to satisfy the field axioms, but this is false! So our “number system” R is not a field even!

This should give you some sense of why we need every single irrational number and cannot discard any at
all in order to retain completeness. Even just appending a single irrational number on to Q will require
us to include many others in order to keep the field axioms satisfied alone. E.g. consider Q U {r} for
some 7 € R\ Q. To make this a field, we need to include ¢ = 7 and ¢ - r for all ¢ € Q, and we also need
to include the multiplicative and additive inverses of these as well, :l:qi% and q - %, etc. Note that when
we multiply or add an irrational » and a rational ¢, the result is irrational, i.e. in addition to including
r, we need to include a countable infinity of other irrationals. And this may then become a field, but it
will not be complete. Completeness requires all irrationals to be included.
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2. (15 pts) Prove that a, = ST\F/% converges.

Solution:
This problem is actually a bit tricky. We first intuit that a,, — 2. And that |a, — 2| = 17;3\/*/;

must try to simplify this and get is less than e. It might also be worth noting that even though we have

a subtraction in the numerator, it is never 0 and is strictly negative so that we can remove t he absolute

value bars if we swap the order: ’17;2\%5 = Qn‘f/%l

Note that we can make the denominator smaller to get
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Finally we note that % < ﬁ for all n giving us that % + % < in + % = %
Putting this all together gives us:
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Now for our official proof:

Proof. Let € > 0 and choose any n* > 6%. Then for any n > n* we have that
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Thus for any € > 0, we can choose a cut-off index n* such that n > n* implies that |a, — 2| < e. This

shows that a,, — 2. [ |
Another, simpler in some ways but somewhat requiring subtle reasoning, argument is that ’17;2\/‘/7? =
i‘ﬁ/}} < nﬁ{% = \/52 T and then choose any n* > (% — 1)2. It would be worthwhile to check that this

works for any € > 0 even though there is subtraction involved. Note that (% — 1)2 =1- % when € > 2,
€

and that, in this case, 55 < € since € — 1 > 1. To sidestep this issue, we could go by the standard

argument requiring that ¢ < 2 and then to note that % is bounded above by 1. This gives that

n

lan, — 2| = i‘f\/_ﬁl < € for all n when € > 2.
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3. (15 pts) Prove that a, = 2” H diverges to infinity.

Solution:

Intuitively we can believe that this sequence behaves like 2n? for large n. There are a variety of ways to
get a, bounded from below by a “nice enough” diverging sequence.
Consider that b, < 2” +1 if and only if b, (n + 1) < 2n3 + 1. Let’s try to find a nice b, that works.

Try b, = 2n?. Then we want 2n> + 2n? < 2n3 4 1 giving 2n? < 1. That doesn’t work!

Try b, = n?. Then we want n?+n? < 2n? +1 giving n? < n?+1. This is true for all n, so by comparison,
we just need to argue that b, = n? diverges to infinity.

Try b, = n. Then we want n? +n < 2n? 4+ 1. Although nothing cancels out, we can argue that, for all
n, we have that n? +n < n? +n? = 2n% < 2n%2 4+ 1 < 2n3 + 1. Of course that wasn’t as simple of an
argument as using b, = n? though.

Another argument with b, = n is the following: n? +n < n? +n? = 2n3 < 2n3 + 1 since n? and n are
both less than or equal to n3. (I think this is my favorite argument.)

So you see that there are a variety of possible arguments.

We have shown that there are several choices of b, that diverge to infinity and also satisfy b, < a,, for
all n. Thus, by comparison Theorem 2.3.2, a,, also diverges to infinity.

Another possible solution is to note that b, = nﬂl < 22 le for all n and show that ;- n converges to zero
and use Theorem 2.3.6, noting that b, > 0 for all n as well. We have that ;- = ~5 + - L which clearly

converges to zero. Thus b, diverges to +o0o by Theorem 2.3.6 and a,, dlverges to +oo by comparison.

4. (15 pts) Let {an}nen be a sequence which converges to A € R and {by, }en & sequence which converges to B € R.
Prove that a,, + k-b, - A+ k- B as n — oo where k € R.

Solution:

Proof. Let € > 0 and choose n; such that |a, — A| < 5 for all n > ny, and also choose ny such that
n > ng implies that |b, — B| < T| Then for all n > n* = max{ni,na2} we have that

(@n + kba) — (A + B)| = |(an — A) + k(b — B)|
< |an — Al + [k| - |b — B

Thus a, + k-b, - A+ k- B. [ |
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