SOLUTIONS

1. (5 pts) Consider the number system $\widetilde{\mathbb{R}}=\mathbb{R} \backslash\{\sqrt{2}\}$ with mathematical operations the same as for \mathbb{R}. Is this number system a complete ordered field? Explain why or why not. You do not need to write a proof, but you should show some careful reasoning.

Solution:

Completeness requires that any nonempty subset of $\widetilde{\mathbb{R}}$ that is bounded above has a supremum that is also in $\widetilde{\mathbb{R}}$. We have already seen that $S=\left\{q \in \mathbb{Q} \mid 0<q^{2}<2\right\} \subset \mathbb{Q} \subset \mathbb{R}$ is nonempty and bounded above and that $\sup S=\sqrt{2} \in \mathbb{R}$. Note that $S \subset \widetilde{\mathbb{R}}$ also! Removing $\sqrt{2}$ from \mathbb{R} to create $\widetilde{\mathbb{R}}$ did not affect set S at all! So S is still nonempty and bounded above as a subset of $\widetilde{\mathbb{R}}$, thus if $\widetilde{\mathbb{R}}$ is complete, then $\sup S \in \widetilde{\mathbb{R}}$. But we know that if $b=\sup S$, then $b^{2}=2$ and $b>0$. Our modified number system $\widetilde{\mathbb{R}}$ has a "hole" at $\sqrt{2}$ though so that there is no $b \in \widetilde{\mathbb{R}}$ with $b>0$ such that $b^{2}=2$. Of course we still have $-\sqrt{2} \in \widetilde{\mathbb{R}}$, but that is of no consequence. Since we have a nonempty and bounded above subset of $\widetilde{\mathbb{R}}$ whose supremum is not a member of $\widetilde{\mathbb{R}}$, we conclude that $\widetilde{\mathbb{R}}$ is NOT complete.
Note that we did not even discuss whether or not $\widetilde{\mathbb{R}}$ even satisfies all field and order axioms. In fact $\widetilde{\mathbb{R}}$ is not even an ordered field at all! Note that $\sqrt{2}-1,1 \in \widetilde{\mathbb{R}}$ and thus $\sqrt{2}-1+1$ should be in $\widetilde{\mathbb{R}}$ if we wanted it to satisfy the field axioms, but this is false! So our "number system" $\widetilde{\mathbb{R}}$ is not a field even!

This should give you some sense of why we need every single irrational number and cannot discard any at all in order to retain completeness. Even just appending a single irrational number on to \mathbb{Q} will require us to include many others in order to keep the field axioms satisfied alone. E.g. consider $\mathbb{Q} \cup\{r\}$ for some $r \in \mathbb{R} \backslash \mathbb{Q}$. To make this a field, we need to include $q \pm r$ and $q \cdot r$ for all $q \in \mathbb{Q}$, and we also need to include the multiplicative and additive inverses of these as well, $\pm \frac{1}{q \pm r}$ and $q \cdot \frac{1}{r}$, etc. Note that when we multiply or add an irrational r and a rational q, the result is irrational, i.e. in addition to including r, we need to include a countable infinity of other irrationals. And this may then become a field, but it will not be complete. Completeness requires all irrationals to be included.
2. (15 pts) Prove that $a_{n}=\frac{2 n+1}{n+\sqrt{n}}$ converges.

Solution:

This problem is actually a bit tricky. We first intuit that $a_{n} \rightarrow 2$. And that $\left|a_{n}-2\right|=\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right|$. Now we must try to simplify this and get is less than ϵ. It might also be worth noting that even though we have a subtraction in the numerator, it is never 0 and is strictly negative so that we can remove t he absolute value bars if we swap the order: $\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right|=\frac{2 \sqrt{n}-1}{n+\sqrt{n}}$.
Note that we can make the denominator smaller to get

$$
\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right|<\left|\frac{1-2 \sqrt{n}}{n}\right|
$$

and that by the triangle inequality we have

$$
\left|\frac{1-2 \sqrt{n}}{n}\right| \leq \frac{1}{n}+\frac{2}{\sqrt{n}}
$$

Finally we note that $\frac{1}{n} \leq \frac{1}{\sqrt{n}}$ for all n giving us that $\frac{1}{n}+\frac{2}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}+\frac{2}{\sqrt{n}}=\frac{3}{\sqrt{n}}$.
Putting this all together gives us:

$$
\left|a_{n}-2\right|=\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right|<\left|\frac{1-2 \sqrt{n}}{n}\right| \leq \frac{1}{n}+\frac{2}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}+\frac{2}{\sqrt{n}}=\frac{3}{\sqrt{n}}
$$

and $\frac{3}{\sqrt{n}}<\epsilon$ when $n>\frac{9}{\epsilon^{2}}$.
Now for our official proof:

Proof. Let $\epsilon>0$ and choose any $n^{*}>\frac{9}{\epsilon^{2}}$. Then for any $n \geq n^{*}$ we have that

$$
\begin{aligned}
\left|a_{n}-2\right| & =\left|\frac{2 n+1}{n+\sqrt{n}}-2 \cdot \frac{n+\sqrt{n}}{n+\sqrt{n}}\right|=\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right| \\
& <\left|\frac{1-2 \sqrt{n}}{n}\right| \leq \frac{1}{n}+\frac{2}{\sqrt{n}} \\
& \leq \frac{1}{\sqrt{n}}+\frac{2}{\sqrt{n}}=\frac{3}{\sqrt{n}} \\
& \leq \frac{3}{\sqrt{n^{*}}}<\frac{3}{\sqrt{\frac{9}{\epsilon^{2}}}}=\epsilon
\end{aligned}
$$

Thus for any $\epsilon>0$, we can choose a cut-off index n^{*} such that $n \geq n^{*}$ implies that $\left|a_{n}-2\right|<\epsilon$. This shows that $a_{n} \rightarrow 2$.

Another, simpler in some ways but somewhat requiring subtle reasoning, argument is that $\left|\frac{1-2 \sqrt{n}}{n+\sqrt{n}}\right|=$ $\frac{2 \sqrt{n}-1}{n+\sqrt{n}}<\frac{2 \sqrt{n}}{n+\sqrt{n}}=\frac{2}{\sqrt{n}+1}$ and then choose any $n^{*}>\left(\frac{2}{\epsilon}-1\right)^{2}$. It would be worthwhile to check that this works for any $\epsilon>0$ even though there is subtraction involved. Note that $\sqrt{\left(\frac{2}{\epsilon}-1\right)^{2}}=1-\frac{2}{\epsilon}$ when $\epsilon \geq 2$, and that, in this case, $\frac{\epsilon}{\epsilon-1}<\epsilon$ since $\epsilon-1 \geq 1$. To sidestep this issue, we could go by the standard argument requiring that $\epsilon<2$ and then to note that $\frac{2 \sqrt{n}-1}{n+\sqrt{n}}$ is bounded above by 1 . This gives that $\left|a_{n}-2\right|=\frac{2 \sqrt{n}-1}{n+\sqrt{n}}<\epsilon$ for all n when $\epsilon \geq 2$.
3. (15 pts) Prove that $a_{n}=\frac{2 n^{3}+1}{n+1}$ diverges to infinity.

Solution:

Intuitively we can believe that this sequence behaves like $2 n^{2}$ for large n. There are a variety of ways to get a_{n} bounded from below by a "nice enough" diverging sequence.
Consider that $b_{n} \leq \frac{2 n^{3}+1}{n+1}$ if and only if $b_{n}(n+1) \leq 2 n^{3}+1$. Let's try to find a nice b_{n} that works.
$\operatorname{Try} b_{n}=2 n^{2}$. Then we want $2 n^{3}+2 n^{2} \leq 2 n^{3}+1$ giving $2 n^{2} \leq 1$. That doesn't work!
$\operatorname{Try} b_{n}=n^{2}$. Then we want $n^{3}+n^{2} \leq 2 n^{3}+1$ giving $n^{2} \leq n^{3}+1$. This is true for all n, so by comparison, we just need to argue that $b_{n}=n^{2}$ diverges to infinity.

Try $b_{n}=n$. Then we want $n^{2}+n \leq 2 n^{3}+1$. Although nothing cancels out, we can argue that, for all n, we have that $n^{2}+n \leq n^{2}+n^{2}=2 n^{2} \leq 2 n^{2}+1 \leq 2 n^{3}+1$. Of course that wasn't as simple of an argument as using $b_{n}=n^{2}$ though.

Another argument with $b_{n}=n$ is the following: $n^{2}+n \leq n^{3}+n^{3}=2 n^{3}<2 n^{3}+1$ since n^{2} and n are both less than or equal to n^{3}. (I think this is my favorite argument.)

So you see that there are a variety of possible arguments.
We have shown that there are several choices of b_{n} that diverge to infinity and also satisfy $b_{n} \leq a_{n}$ for all n. Thus, by comparison Theorem 2.3.2, a_{n} also diverges to infinity.

Another possible solution is to note that $b_{n}=\frac{n^{3}}{n+1}<\frac{2 n^{3}+1}{n+1}$ for all n and show that $\frac{1}{b_{n}}$ converges to zero and use Theorem 2.3.6, noting that $b_{n}>0$ for all n as well. We have that $\frac{1}{b_{n}}=\frac{1}{n^{2}}+\frac{1}{n}$ which clearly converges to zero. Thus b_{n} diverges to $+\infty$ by Theorem 2.3.6 and a_{n} diverges to $+\infty$ by comparison.
4. (15 pts) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence which converges to $A \in \mathbb{R}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ a sequence which converges to $B \in \mathbb{R}$. Prove that $a_{n}+k \cdot b_{n} \rightarrow A+k \cdot B$ as $n \rightarrow \infty$ where $k \in \mathbb{R}$.

Solution:

Proof. Let $\epsilon>0$ and choose n_{1} such that $\left|a_{n}-A\right|<\frac{\epsilon}{2}$ for all $n \geq n_{1}$, and also choose n_{2} such that $n \geq n_{2}$ implies that $\left|b_{n}-B\right|<\frac{\epsilon}{2|k|}$. Then for all $n \geq n^{*}=\max \left\{n_{1}, n_{2}\right\}$ we have that

$$
\begin{aligned}
\left|\left(a_{n}+k b_{n}\right)-(A+k B)\right| & =\left|\left(a_{n}-A\right)+k\left(b_{n}-B\right)\right| \\
& \leq\left|a_{n}-A\right|+|k| \cdot\left|b_{n}-B\right| \\
& <\frac{\epsilon}{2}+|k| \cdot \frac{\epsilon}{2|k|} \\
& =\epsilon
\end{aligned}
$$

Thus $a_{n}+k \cdot b_{n} \rightarrow A+k \cdot B$.

