
MATH 413 – QUIZ 1 – Fall 2020 ‖ 50 POINTS

SOLUTIONS

1. (5 pts) Consider the number system R̃ = R \ {
√

2} with mathematical operations the same as for R. Is this
number system a complete ordered field? Explain why or why not. You do not need to write a proof, but you should
show some careful reasoning.

Solution:

Completeness requires that any nonempty subset of R̃ that is bounded above has a supremum that is
also in R̃. We have already seen that S = {q ∈ Q | 0 < q2 < 2} ⊂ Q ⊂ R is nonempty and bounded above
and that supS =

√
2 ∈ R. Note that S ⊂ R̃ also! Removing

√
2 from R to create R̃ did not affect set S

at all! So S is still nonempty and bounded above as a subset of R̃, thus if R̃ is complete, then supS ∈ R̃.
But we know that if b = supS, then b2 = 2 and b > 0. Our modified number system R̃ has a “hole” at√

2 though so that there is no b ∈ R̃ with b > 0 such that b2 = 2. Of course we still have −
√

2 ∈ R̃, but
that is of no consequence. Since we have a nonempty and bounded above subset of R̃ whose supremum
is not a member of R̃, we conclude that R̃ is NOT complete.

Note that we did not even discuss whether or not R̃ even satisfies all field and order axioms. In fact R̃
is not even an ordered field at all! Note that

√
2 − 1, 1 ∈ R̃ and thus

√
2 − 1 + 1 should be in R̃ if we

wanted it to satisfy the field axioms, but this is false! So our “number system” R̃ is not a field even!

This should give you some sense of why we need every single irrational number and cannot discard any at
all in order to retain completeness. Even just appending a single irrational number on to Q will require
us to include many others in order to keep the field axioms satisfied alone. E.g. consider Q ∪ {r} for
some r ∈ R \Q. To make this a field, we need to include q ± r and q · r for all q ∈ Q, and we also need
to include the multiplicative and additive inverses of these as well, ± 1

q±r and q · 1r , etc. Note that when
we multiply or add an irrational r and a rational q, the result is irrational, i.e. in addition to including
r, we need to include a countable infinity of other irrationals. And this may then become a field, but it
will not be complete. Completeness requires all irrationals to be included.
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2. (15 pts) Prove that an = 2n+1
n+
√
n

converges.

Solution:

This problem is actually a bit tricky. We first intuit that an → 2. And that |an − 2| =
∣∣∣1−2√nn+

√
n

∣∣∣. Now we

must try to simplify this and get is less than ε. It might also be worth noting that even though we have
a subtraction in the numerator, it is never 0 and is strictly negative so that we can remove t he absolute

value bars if we swap the order:
∣∣∣1−2√nn+

√
n

∣∣∣ = 2
√
n−1

n+
√
n

.

Note that we can make the denominator smaller to get∣∣∣∣1− 2
√
n

n+
√
n

∣∣∣∣ < ∣∣∣∣1− 2
√
n

n

∣∣∣∣
and that by the triangle inequality we have∣∣∣∣1− 2

√
n

n

∣∣∣∣ ≤ 1

n
+

2√
n

Finally we note that 1
n ≤

1√
n

for all n giving us that 1
n + 2√

n
≤ 1√

n
+ 2√

n
= 3√

n
.

Putting this all together gives us:

|an − 2| =
∣∣∣∣1− 2

√
n

n+
√
n

∣∣∣∣ < ∣∣∣∣1− 2
√
n

n

∣∣∣∣ ≤ 1

n
+

2√
n
≤ 1√

n
+

2√
n

=
3√
n

and 3√
n
< ε when n > 9

ε2
.

Now for our official proof:

Proof. Let ε > 0 and choose any n∗ > 9
ε2

. Then for any n ≥ n∗ we have that

|an − 2| =
∣∣∣∣ 2n+ 1

n+
√
n
− 2 · n+

√
n

n+
√
n

∣∣∣∣ =

∣∣∣∣1− 2
√
n

n+
√
n

∣∣∣∣
<

∣∣∣∣1− 2
√
n

n

∣∣∣∣ ≤ 1

n
+

2√
n

≤ 1√
n

+
2√
n

=
3√
n

≤ 3√
n∗

<
3√
9
ε2

= ε

Thus for any ε > 0, we can choose a cut-off index n∗ such that n ≥ n∗ implies that |an − 2| < ε. This
shows that an → 2. �

Another, simpler in some ways but somewhat requiring subtle reasoning, argument is that
∣∣∣1−2√nn+

√
n

∣∣∣ =

2
√
n−1

n+
√
n
< 2

√
n

n+
√
n

= 2√
n+1

and then choose any n∗ >
(
2
ε − 1

)2
. It would be worthwhile to check that this

works for any ε > 0 even though there is subtraction involved. Note that

√(
2
ε − 1

)2
= 1− 2

ε when ε ≥ 2,
and that, in this case, ε

ε−1 < ε since ε − 1 ≥ 1. To sidestep this issue, we could go by the standard

argument requiring that ε < 2 and then to note that 2
√
n−1

n+
√
n

is bounded above by 1. This gives that

|an − 2| = 2
√
n−1

n+
√
n
< ε for all n when ε ≥ 2.
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3. (15 pts) Prove that an = 2n3+1
n+1 diverges to infinity.

Solution:

Intuitively we can believe that this sequence behaves like 2n2 for large n. There are a variety of ways to
get an bounded from below by a “nice enough” diverging sequence.
Consider that bn ≤ 2n3+1

n+1 if and only if bn(n+ 1) ≤ 2n3 + 1. Let’s try to find a nice bn that works.

Try bn = 2n2. Then we want 2n3 + 2n2 ≤ 2n3 + 1 giving 2n2 ≤ 1. That doesn’t work!

Try bn = n2. Then we want n3+n2 ≤ 2n3+1 giving n2 ≤ n3+1. This is true for all n, so by comparison,
we just need to argue that bn = n2 diverges to infinity.

Try bn = n. Then we want n2 + n ≤ 2n3 + 1. Although nothing cancels out, we can argue that, for all
n, we have that n2 + n ≤ n2 + n2 = 2n2 ≤ 2n2 + 1 ≤ 2n3 + 1. Of course that wasn’t as simple of an
argument as using bn = n2 though.

Another argument with bn = n is the following: n2 + n ≤ n3 + n3 = 2n3 < 2n3 + 1 since n2 and n are
both less than or equal to n3. (I think this is my favorite argument.)

So you see that there are a variety of possible arguments.

We have shown that there are several choices of bn that diverge to infinity and also satisfy bn ≤ an for
all n. Thus, by comparison Theorem 2.3.2, an also diverges to infinity.

Another possible solution is to note that bn = n3

n+1 <
2n3+1
n+1 for all n and show that 1

bn
converges to zero

and use Theorem 2.3.6, noting that bn > 0 for all n as well. We have that 1
bn

= 1
n2 + 1

n which clearly
converges to zero. Thus bn diverges to +∞ by Theorem 2.3.6 and an diverges to +∞ by comparison.

4. (15 pts) Let {an}n∈N be a sequence which converges to A ∈ R and {bn}n∈N a sequence which converges to B ∈ R.
Prove that an + k · bn → A+ k ·B as n→∞ where k ∈ R.

Solution:

Proof. Let ε > 0 and choose n1 such that |an − A| < ε
2 for all n ≥ n1, and also choose n2 such that

n ≥ n2 implies that |bn −B| < ε
2|k| . Then for all n ≥ n∗ = max{n1, n2} we have that

|(an + kbn)− (A+ kB)| = |(an −A) + k(bn −B)|
≤ |an −A|+ |k| · |bn −B|

<
ε

2
+ |k| · ε

2|k|
= ε

Thus an + k · bn → A+ k ·B. �
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