SOLUTION

1. Section 2.3, Exercise 3(a)

Solution:

Prove that $a_{n}=\frac{n^{2}+1}{n-2}$ diverges to infinity.
This problem is a bit ill-posed since the domain of values for n is not specified and the sequence is undefined at $n=2$, therefor this is not a sequence of real numbers! Let's just assume that the index starts at $n=3$, i.e. that we are considering the sequence $\left\{\frac{n^{2}+1}{n-2}\right\}_{n=3}^{\infty}$.

Note that $n<n+\frac{1}{n}=\frac{n^{2}+1}{n}<\frac{n^{2}+1}{n-2}$. So given any $M>0$ let $n^{*}=\max \{M, 3\}$. For any $n \geq n^{*}$ we have $M=n^{*} \leq n<n+\frac{1}{n}=\frac{n^{2}+1}{n}<\frac{n^{2}+1}{n-2}$ thus $\frac{n^{2}+1}{n-2}$ diverges to infinity.
2. Section 2.4, Exercise 2. Also: give an example of a converging sequence that does attain its maximum. You do not need to prove your results, but give some argument.

Solution:

$a_{n}=1-\frac{1}{n}$ converges to one, but never "attains" a maximum value. Assume $M=$ $\max \left\{a_{n}\right\}$. Then $M<1$ since $a_{n}<1$ for all n. But then there is some $\epsilon>0$ such that $M+\epsilon<1$, i.e. that $M<1-\epsilon<1$. Since a_{n} converges to one, there are infinitely many terms in the interval $(1-\epsilon, 1]$. So M cannot possibly be the max.
Let $a_{1}=1$ and $a_{n}=1-\frac{1}{n}$ for all $n \geq 2$. Then $\max \left\{a_{n}\right\}=1$ and $a_{n}=1$ for $n=1$. Note that we could set a_{1} to any value at or above 1 , and the sequence would still attain this value as its maximum. For another example, consider $b_{n}=\frac{1}{n}$, a decreasing sequence that attains its maximum at $a_{1}=1$ also. Every decreasing sequence will attain its maximum, and every increasing sequence will attain its minimum.
3. Section 2.4, Exercise 5

Solution:

Prove that for an eventually decreasing sequence a_{n}, there are two possibilities:
(a) a_{n} is bounded below by M, in which case there exists $L \geq M$ such that $a_{n} \rightarrow L$.
(b) a_{n} is unbounded, in which case $a_{n} \rightarrow-\infty$.

Proof. (a) If a_{n} is bounded from below and is eventually decreasing, then it converges by the monotone convergence theorem. Let L be its limit. Now we must show that $M \leq L$. Assume the opposite, that $L<M$. Then there exists an $\epsilon>0$ such that $L+\epsilon<M$. Since $a_{n} \rightarrow L$ and is eventually decreasing, we know that there is an n^{*} such that $L \leq a_{n+1}<a_{n}<L+\epsilon<M$ for all $n \geq n^{*}$. This is a contradiction since M is a lower bound on a_{n}, and we cannot have $a_{n}<M$. Thus we conclude that $M \leq L$.
(b) If a_{n} is eventually decreasing and unbounded, then by definition of unboundedness, there are terms below M for any $M \in \mathbb{R}$. Let $M<0$. Only consider the part of the sequence which are deceasing. This just means we discard a finite number of terms. The remaining terms must still have no lower bound. Then there exists some n^{*} such that $a_{n^{*}}<M$ (for this part of the sequence where it is decreasing). Since it is decreasing, $a_{n} \leq a_{n^{*}}<M$ for all $n \leq n^{*}$. Since we can find this cutoff n^{*} for any arbitrary $M<0$, we conclude that this sequence is diverging to $-\infty$.
4. Consider the sequence defined by $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+1}+1$ for all $n \geq 1$. Prove that this sequence converges and find its limit. (Hint: use monotone convergence. Induction may be helpful to show the sequence is bounded and increasing.)

Solution:

Step 1: show it is monotone increasing
Note that $a_{1}=1<a_{2}=\sqrt{2}+1$. So it looks like it might be increasing. Assume $a_{n-1}<a_{n}$. Now $a_{n+1}=\sqrt{a_{n}+1}+1>\sqrt{a_{n-1}+1}+1=a_{n}$. This shows that $a_{n}<a_{n+1}$ also. Since we have show that $a_{1}<a_{2}$ and that $a_{n-1}<a_{n}$ implies that $a_{n}<a_{n+1}$, by induction we have that $a_{n}<a_{n+1}$ for all n. So this sequence is strictly increasing.

Step 2: show it is bounded from above
Note that $a_{1} \leq 3$. Assume $a_{n} \leq 3$. Then $a_{n+1}=\sqrt{a_{n}+1}+1 \leq \sqrt{3+1}+1=2+1=3$. Thus induction shows that $a_{n} \leq 3$ for all n. By the monotone convergence theorem, we now know that this sequence converges.

Step 3: find the limit
Let $a_{n} \rightarrow A$. Since $a_{n+1}=\sqrt{a_{n}+1}+1$, we know that shifting the sequence index by 1 does not change the convergence behavior, so that $a_{n} \rightarrow A$ means that $a_{n+1} \rightarrow A$. We also know that adding 1 to a sequence gives $a_{n}+1 \rightarrow A+1$ and that taking square root of a sequence doesn't affect things, i.e. that $\sqrt{a_{n}+1} \rightarrow \sqrt{A+1}$ (see Theorem 2.2.1(e)). So we can take the limit of both sides of the recursive formula to get $A=\sqrt{A+1}+1$. Now we solve for $A . A-1=\sqrt{A+1} \Rightarrow(A-1)^{2}=A+1 \Rightarrow A=0,3$. Since we know the sequence is increasing and $a_{1}=1$, we cannot have $A=0$, thus $a_{n} \rightarrow 3$.

It is an instructive exercise to see what happens when you choose different values for a_{1}. You will find that for any $a_{1} \geq-1$ the sequence converges to 3 . When $a_{1}<3$ it is increasing, and it is decreasing when $a_{1}>3$. Clearly $a_{1}=3$ gives a constant sequence.

5. Section 2.5, Exercise 11

Solution:

Prove that if a_{n} and b_{n} are two Cauchy sequences, then so are $a_{n}+b_{n}$ and $a_{n} b_{n}$. Do not use Theorem 2.5.9.

Proof. We first show that $a_{n}+b_{n}$ is Cauchy. Given $\epsilon>0$ choose $n_{1}, n_{2} \in \mathbb{N}$ such that $n, m \geq n_{1}$ implies that $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2}$ and $n, m \geq n_{2}$ implies that $\left|b_{n}-b_{m}\right|<\frac{\epsilon}{2}$. Then we have that $n \geq \max \left\{n_{1}, n_{2}\right\}$ implies that $\left|\left(a_{n}+b_{n}\right)-\left(a_{m}+b_{m}\right)\right| \leq\left|a_{n}-a_{m}\right|+\left|b_{n}-b_{m}\right|<$ $\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Thus $a_{n}+b_{n}$ is Cauchy.

Now we show that $a_{n} b_{n}$ is Cauchy. Since a_{n} and b_{n} are Cauchy, we know they are bounded by Theorem 2.5.8. Let M_{a} and M_{b} be bounds on these sequences, respectively, so that $\left|a_{n}\right| \leq M_{a}$ and $\left|b_{n}\right| \leq M_{b}$ for all n. Now choose $n_{1}, n_{2} \in \mathbb{N}$ such that $n, m \geq n_{1}$ implies that $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2 M_{b}}$ and $n, m \geq n_{2}$ implies that $\left|b_{n}-b_{m}\right|<\frac{\epsilon}{2 M_{a}}$. Then we have that $n \geq \max \left\{n_{1}, n_{2}\right\}$ implies that $\left|a_{n} b_{n}-a_{m} b_{m}\right|=\left|a_{n} b_{n}-a_{m} b_{n}+a_{m} b_{n}-a_{m} b_{m}\right| \leq$ $\left|b_{n}\right| \cdot\left|a_{n}-a_{m}\right|+\left|a_{m}\right| \cdot\left|b_{n}-b_{m}\right|<M_{b} \cdot \frac{\epsilon}{2 M_{b}}+M_{a} \cdot \frac{\epsilon}{2 M_{a}}=\epsilon$. Thus $a_{n} b_{n}$ is Cauchy.
6. (a) Consider the sequence

$$
a_{n}= \begin{cases}(-1)^{n}+3 & \text { when } n \text { is a multiple of } 5 \\ \frac{1}{n} & \text { otherwise }\end{cases}
$$

Find $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$.
(b) Now consider the subsequence $b_{n}=a_{5 n}$ for $n \in \mathbb{N}$. Find $\limsup _{n \rightarrow \infty} b_{n}$ and $\liminf _{n \rightarrow \infty} b_{n}$.

Solution:

(a) $\limsup a_{n}=4$ because no matter how large a cutoff n^{*} we pick, there will be n that are multiple of 5 beyond it giving us $a_{n}=5$. Of course $a_{n} \leq 5$ for all n.
$\liminf _{n \rightarrow \infty} a_{n}=0$ because, excluding n that are multiples of 5 there will be infinitely many large n values using the $\frac{1}{n}$ part of the definition that get us very close to zero, in fact, arbitrarily close. We have that $a_{n}>0$ for all n, but given any $\epsilon>0$ we have that $0<a_{n}<\epsilon$ for infinitely many n so for any n^{*} we have that $\inf \left\{a_{n} \mid n \in \mathbb{N}, n \geq n^{*}\right\}=0$.
(b) Now extracting the subsequence $b_{n}=a_{5 n}$ for $n \in \mathbb{N}$ excludes the $\frac{1}{n}$ part of the definition of a_{n}. We get $\limsup _{n \rightarrow \infty} b_{n}=4$ and $\liminf _{n \rightarrow \infty} b_{n}=2$.
7. (optional) Prove the following theorem about "swapping the order" of strictly increasing convergent sequences.

Theorem. Let a_{n} and b_{n} be two strictly increasing sequences converging to the same limit and satisfying $a_{n}<b_{n}$ for all n. Prove that the exists a subsequence of $a_{n}, c_{n}=a_{f(n)}$ that satisfies $b_{n}<c_{n}$ for all n.

Solution:

Let $a_{n} \rightarrow A$ and $b_{n} \rightarrow A$. We know that $a_{n}<b_{n}<A$ for all n since they are strictly increasing sequences. Thus we have that $0<A-b_{n}<A-a_{n}$ for all n.

Now we will create a subsequence of a_{n}. Since $0<A-b_{n}$ for all n, for each fixed $k \in \mathbb{N}$ we can find a $n^{*} \in \mathbb{N}$ such that for all $n \geq n^{*}$ we have that $\left|a_{n}-A\right|<A-b_{k}$. Note that here n is ranging from n^{*} to infinity, and k is a fixed constant.

Also, since b_{n} is strictly increasing, we know that $A-b_{n}$ is strictly decreasing. This gives us that when we choose a cutoff n^{*} such that $n \geq n^{*}$ gives us $\left|a_{n}-A\right|<A-b_{k}$ we also have that $\left|a_{n}-A\right|<A-b_{k}<A-b_{k-1}$.
Let $n=1$, then choose n_{1} such that $A-a_{n_{1}}=\left|a_{n_{1}}-A\right|<A-b_{1}$ (there shouldn't be any problem with this given what was stated above). Then let $n=2$ and choose $n_{2}>n_{1}$ such that $A-a_{n_{2}}<A-b_{2}$. Recall that we know there is an n^{*} such that $n \geq n^{*}$ implies that $\left|a_{n}-A\right|<A-b_{2}$ so we just need to choose an n_{2} that satisfies $n_{2} \geq \max \left\{n^{*}, n_{1}+1\right\}$. So we are essentially creating a sequence of cut-off n^{*} 's $\left\{n_{1}^{*}, n_{2}^{*}, \ldots\right\}$ and picking $n_{1} \geq n_{1}^{*}$, $n_{2} \geq \max \left\{n_{2}^{*}, n_{1}+1\right\}, n_{3} \geq \max \left\{n_{3}^{*}, n_{2}+1\right\}, \ldots, n_{k} \geq \max \left\{n_{k}^{*}, n_{k-1}+1\right\}$. For each k, we know that such an n_{k} can be chosen since there are always infinitely many natural number left to choose from. This is a consequence of induction: We can do this to get an n_{1}, and our ability to do this to get n_{k} implies that we can do it to get such an n_{k+1} therefore we can create such a sequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$.

Note that $A-a_{n_{k}}<A-b_{k}$ for all $k \in \mathbb{N}$. In other words, rearranging gives $b_{k}<a_{n_{k}}$ for all k. Now we have our subsequence of a_{n} given by $f(k)=n_{k}$ (note that $c_{k}=a_{f(k)}$) that is strictly larger than b_{n} for all n, that is that $b_{k}<a_{n_{k}}=c_{k}$. Note that the use of k to denote the index here is of no consequence. Here k is ranging over the set of all natural numbers, so we can simply rewrite " $b_{k}<c_{k}$ for all $k \in \mathbb{N}$ " as " $b_{n}<c_{n}$ for all $n \in \mathbb{N}$."

