
MATH 413 – Real Analysis I – Fall 2020 – HW 04

SOLUTION

1. Section 2.3, Exercise 3(a)

Solution:

Prove that an = n2+1
n−2 diverges to infinity.

This problem is a bit ill-posed since the domain of values for n is not specified and the
sequence is undefined at n = 2, therefor this is not a sequence of real numbers! Let’s
just assume that the index starts at n = 3, i.e. that we are considering the sequence{
n2+1
n−2

}∞
n=3

.

Note that n < n+ 1
n = n2+1

n < n2+1
n−2 . So given any M > 0 let n∗ = max{M, 3}. For any

n ≥ n∗ we have M = n∗ ≤ n < n+ 1
n = n2+1

n < n2+1
n−2 thus n2+1

n−2 diverges to infinity.

2. Section 2.4, Exercise 2. Also: give an example of a converging sequence that does attain its
maximum. You do not need to prove your results, but give some argument.

Solution:

an = 1 − 1
n converges to one, but never “attains” a maximum value. Assume M =

max{an}. Then M < 1 since an < 1 for all n. But then there is some ε > 0 such that
M + ε < 1, i.e. that M < 1− ε < 1. Since an converges to one, there are infinitely many
terms in the interval (1− ε, 1]. So M cannot possibly be the max.
Let a1 = 1 and an = 1− 1

n for all n ≥ 2. Then max{an} = 1 and an = 1 for n = 1. Note
that we could set a1 to any value at or above 1, and the sequence would still attain this
value as its maximum. For another example, consider bn = 1

n , a decreasing sequence that
attains its maximum at a1 = 1 also. Every decreasing sequence will attain its maximum,
and every increasing sequence will attain its minimum.

3. Section 2.4, Exercise 5

Solution:

Prove that for an eventually decreasing sequence an, there are two possibilities:
(a) an is bounded below by M , in which case there exists L ≥M such that an → L.
(b) an is unbounded, in which case an → −∞.

Proof. (a) If an is bounded from below and is eventually decreasing, then it converges
by the monotone convergence theorem. Let L be its limit. Now we must show that
M ≤ L. Assume the opposite, that L < M . Then there exists an ε > 0 such that
L+ ε < M . Since an → L and is eventually decreasing, we know that there is an n∗ such
that L ≤ an+1 < an < L + ε < M for all n ≥ n∗. This is a contradiction since M is a
lower bound on an, and we cannot have an < M . Thus we conclude that M ≤ L.

(b) If an is eventually decreasing and unbounded, then by definition of unboundedness,
there are terms below M for any M ∈ R. Let M < 0. Only consider the part of the
sequence which are deceasing. This just means we discard a finite number of terms. The
remaining terms must still have no lower bound. Then there exists some n∗ such that
an∗ < M (for this part of the sequence where it is decreasing). Since it is decreasing,
an ≤ an∗ < M for all n ≤ n∗. Since we can find this cutoff n∗ for any arbitrary M < 0,
we conclude that this sequence is diverging to −∞. �
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4. Consider the sequence defined by a1 = 1 and an+1 =
√
an + 1 + 1 for all n ≥ 1. Prove that

this sequence converges and find its limit. (Hint: use monotone convergence. Induction may
be helpful to show the sequence is bounded and increasing.)

Solution:

Step 1: show it is monotone increasing

Note that a1 = 1 < a2 =
√

2 + 1. So it looks like it might be increasing. Assume
an−1 < an. Now an+1 =

√
an + 1 + 1 >

√
an−1 + 1 + 1 = an. This shows that an < an+1

also. Since we have show that a1 < a2 and that an−1 < an implies that an < an+1, by
induction we have that an < an+1 for all n. So this sequence is strictly increasing.

Step 2: show it is bounded from above

Note that a1 ≤ 3. Assume an ≤ 3. Then an+1 =
√
an + 1 + 1 ≤

√
3 + 1 + 1 = 2 + 1 = 3.

Thus induction shows that an ≤ 3 for all n. By the monotone convergence theorem, we
now know that this sequence converges.

Step 3: find the limit
Let an → A. Since an+1 =

√
an + 1 + 1, we know that shifting the sequence index by 1

does not change the convergence behavior, so that an → A means that an+1 → A. We
also know that adding 1 to a sequence gives an + 1→ A+ 1 and that taking square root
of a sequence doesn’t affect things, i.e. that

√
an + 1→

√
A+ 1 (see Theorem 2.2.1(e)).

So we can take the limit of both sides of the recursive formula to get A =
√
A+ 1 + 1.

Now we solve for A. A − 1 =
√
A+ 1 ⇒ (A − 1)2 = A + 1 ⇒ A = 0, 3. Since we know

the sequence is increasing and a1 = 1, we cannot have A = 0, thus an → 3.

It is an instructive exercise to see what happens when you choose different values for
a1. You will find that for any a1 ≥ −1 the sequence converges to 3. When a1 < 3 it is
increasing, and it is decreasing when a1 > 3. Clearly a1 = 3 gives a constant sequence.

5. Section 2.5, Exercise 11

Solution:

Prove that if an and bn are two Cauchy sequences, then so are an + bn and anbn. Do not
use Theorem 2.5.9.

Proof. We first show that an + bn is Cauchy. Given ε > 0 choose n1, n2 ∈ N such that
n,m ≥ n1 implies that |an− am| < ε

2 and n,m ≥ n2 implies that |bn− bm| < ε
2 . Then we

have that n ≥ max{n1, n2} implies that |(an + bn)− (am + bm)| ≤ |an− am|+ |bn− bm| <
ε
2 + ε

2 = ε. Thus an + bn is Cauchy.

Now we show that anbn is Cauchy. Since an and bn are Cauchy, we know they are
bounded by Theorem 2.5.8. Let Ma and Mb be bounds on these sequences, respectively,
so that |an| ≤ Ma and |bn| ≤ Mb for all n. Now choose n1, n2 ∈ N such that n,m ≥ n1
implies that |an − am| < ε

2Mb
and n,m ≥ n2 implies that |bn − bm| < ε

2Ma
. Then we

have that n ≥ max{n1, n2} implies that |anbn−ambm| = |anbn−ambn +ambn−ambm| ≤
|bn| · |an − am|+ |am| · |bn − bm| < Mb · ε

2Mb
+Ma · ε

2Ma
= ε. Thus anbn is Cauchy. �
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6. (a) Consider the sequence

an =

{
(−1)n + 3 when n is a multiple of 5
1
n otherwise

Find lim sup
n→∞

an and lim inf
n→∞

an.

(b) Now consider the subsequence bn = a5n for n ∈ N. Find lim sup
n→∞

bn and lim inf
n→∞

bn.

Solution:

(a) lim sup
n→∞

an = 4 because no matter how large a cutoff n∗ we pick, there will be n that

are multiple of 5 beyond it giving us an = 5. Of course an ≤ 5 for all n.
lim inf
n→∞

an = 0 because, excluding n that are multiples of 5 there will be infinitely many

large n values using the 1
n part of the definition that get us very close to zero, in fact,

arbitrarily close. We have that an > 0 for all n, but given any ε > 0 we have that
0 < an < ε for infinitely many n so for any n∗ we have that inf{an | n ∈ N, n ≥ n∗} = 0.

(b) Now extracting the subsequence bn = a5n for n ∈ N excludes the 1
n part of the

definition of an. We get lim sup
n→∞

bn = 4 and lim inf
n→∞

bn = 2.

7. (optional) Prove the following theorem about “swapping the order” of strictly increasing
convergent sequences.

Theorem. Let an and bn be two strictly increasing sequences converging to the
same limit and satisfying an < bn for all n. Prove that the exists a subsequence
of an, cn = af(n) that satisfies bn < cn for all n.

Solution:

Let an → A and bn → A. We know that an < bn < A for all n since they are strictly
increasing sequences. Thus we have that 0 < A− bn < A− an for all n.

Now we will create a subsequence of an. Since 0 < A− bn for all n, for each fixed k ∈ N
we can find a n∗ ∈ N such that for all n ≥ n∗ we have that |an −A| < A− bk. Note that
here n is ranging from n∗ to infinity, and k is a fixed constant.

Also, since bn is strictly increasing, we know that A− bn is strictly decreasing. This gives
us that when we choose a cutoff n∗ such that n ≥ n∗ gives us |an − A| < A− bk we also
have that |an −A| < A− bk < A− bk−1.

Let n = 1, then choose n1 such that A − an1 = |an1 − A| < A − b1 (there shouldn’t be
any problem with this given what was stated above). Then let n = 2 and choose n2 > n1
such that A− an2 < A− b2. Recall that we know there is an n∗ such that n ≥ n∗ implies
that |an−A| < A−b2 so we just need to choose an n2 that satisfies n2 ≥ max{n∗, n1+1}.
So we are essentially creating a sequence of cut-off n∗’s {n∗1, n∗2, . . .} and picking n1 ≥ n∗1,
n2 ≥ max{n∗2, n1 + 1}, n3 ≥ max{n∗3, n2 + 1}, ..., nk ≥ max{n∗k, nk−1 + 1}. For each k,
we know that such an nk can be chosen since there are always infinitely many natural
number left to choose from. This is a consequence of induction: We can do this to get
an n1, and our ability to do this to get nk implies that we can do it to get such an nk+1

therefore we can create such a sequence {nk}k∈N.

Note that A− ank
< A− bk for all k ∈ N. In other words, rearranging gives bk < ank

for
all k. Now we have our subsequence of an given by f(k) = nk (note that ck = af(k)) that
is strictly larger than bn for all n, that is that bk < ank

= ck. Note that the use of k to
denote the index here is of no consequence. Here k is ranging over the set of all natural
numbers, so we can simply rewrite “bk < ck for all k ∈ N” as “bn < cn for all n ∈ N.”
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