
MATH 413 – Real Analysis I – Fall 2020 – HW 05

SOLUTION

1. Let f(x) = 10x+3
5x−2 . Prove that lim

x→∞
f(x) = 2. Use Definition 3.1.1 directly, but no other

results after it from 3.1.

Solution:

We want |f(x)− 2| < ε when x ≥ M . We have that f(x)− 2 = 10x+3−10x+4
5x−2 = 7

5x−2 < ε

when 1
5

(
7
ε + 2

)
< x. This also requires 5x − 2 > 0 in order to allow the calculation to

not flip the inequality. Now we write our proof.

Proof. Let ε > 0, and choose any M > max
{
2
5 ,

1
5

(
7
ε + 2

)}
. Then for all x ≥M we have

that

|f(x)− 2| =
∣∣∣∣10x+ 3

5x− 2
− 2

∣∣∣∣
=

7

5x− 2

≤ 7

5M − 2

≤ 7

5
[
1
5

(
7
ε + 2

)]
− 2

= ε

Thus we have shown that for any arbitrary distance ε we wish to be from 2, we can
find a cutoff x value M beyond which f(x) is within ε of 2, satisfying the definition of
limx→∞ f(x) = 2. �
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2. Let f(x) = x3−2x2+x+7
2x−1 . Prove that lim

x→∞
f(x) = +∞. Use Definition 3.1.9 directly, but no

other results after it from 3.1.

Solution:

Note that f(x) ≈ 1
2x for x large enough. This means that if we choose a slightly smaller

coefficient, say, 1
3 , then we can show that f(x) ≥ 1

3 for large enough x values.

Here is some scratchwork: f(x) = x3−2x2+x+7
2x−1 ≥ 1

3x if and only if 3(x3 − 2x2 + x+ 7) ≥
x(2x− 1) (cross-multiplying). This simplifies to 3x3 − 6x2 + 3x+ 21 ≥ 2x2 − x and then
to 3x3 − 8x2 + 4x+ 21 ≥ 0. We can argue that 3x3 is the dominant term of the left side
and so will overtake the −8x2 term when x is large enough. First note that in our cross
multiplication, we required 2x− 1 > 0 to prevent flipping the inequality (i.e. x > 1

2).

You can simply argue that 3x3−8x2+4x+21 is a polynomial with even leading coefficient,
and therefore its right wide tail goes upwards, but I will present a more thorough argument
here.

Note that 4x+21 ≥ 0 when x > 1
2 , so that requirement (to prevent flipping the inequality

when cross multiplying) takes care of that part.

Now note that 3x3 > 8x2 when x > 8
3 . Note that 8

3 >
1
2 . So we can safely say that when

x > 8
3 we have 3x3 − 8x2 + (4x+ 21) > 8x2 − 8x2 + 0 = 0.

We conclude that f(x) = x3−2x2+x+7
2x−1 > 1

3x when x > 8
3 . Note that this is a stronger

bound on x than we need. In fact, this is true for all x > 0, and even true for some negative
x values as well. It doesn’t matter, we just needed to make sure it was eventually true.
It doesn’t matter if our bound is the best possible bound.

Now we are ready to write the proof.

Proof. Let K > 0 and choose any M > max{83 , 3K}. Then we have that for all x ≥ M
it is true that

f(x) =
x3 − 2x2 + x+ 7

2x− 1

>
1

3
x (since x ≥M >

8

3
, and above scratchwork)

≥ 1

3
M (since x ≥M)

>
1

3
(3K) (since M > 3K)

= K

Therefore f(x)→∞ as x→∞. �
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3. Section 3.2, Exercise 1(a).

Solution:

Show that lim
x→0

(x+ 1)3 = 1.

Note that (x+ 1)3 − 1 = ((x+ 1)− 1)((x+ 1)2 + (x+ 1) + 1) by sum/difference of cubes
factoring formula. Thus putting on absolute value bars and simplifying we get

|(x+ 1)3 − 1| = |x| · |x2 + 3x+ 3|.

Now we will bound the factor on the right. Since x is going to zero, we will require
|x| < 1. This makes |x2 + 3x + 3| < 7. So now given ε > 0, we will choose a δ > 0 that
also satisfied δ < 1 and δ < ε

7 so that |x| < δ < 1 means |x2 + 3x+ 3| < 7. Now we write
up our proof.

Proof. Let ε > 0 and choose δ > 0 such that 0 < δ < min{1, ε7}. THen for all x such that
0 < |x| < δ we have

|(x+ 1)3 − 1| = |x| · |x2 + 3x+ 3|
< δ · (|x|2 + 3|x|+ 3)

< δ · (δ2 + 3 · δ + 3)

< δ · (12 + 3 · 1 + 3)

= δ · 7

=
ε

7
· 7 = ε

Thus (x+ 1)3 → 1 as x→ 0. �
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4. Section 3.2, Exercise 8.

Solution:

Consider the function f : [−1, 1]→ R, defined by

f(x) =

{
0 if x = ± 1

n with n ∈ N
1 otherwise

Find the given limits if possible and then prove that your results are correct.
(a) lim

x→ 3
8

f(x)

(b) lim
x→− 1

3

f(x)

(c) lim
x→0

f(x)

(a) Notice that f(38) = 1 since 3
8 6=

1
n for any n ∈ N. Note that 1

4 <
3
8 <

1
2 so that if

δ < 1
8 and |x− 3

8 | < δ then f(x) = 1 also. So for any ε > 0, let δ = 1
8 , then |f(x)− 1| < ε

when 0 < |x− 3
8 | < δ = 1

8 . Thus lim
x→ 3

8

f(x) = 1.

(b) We have that f(−1
3) = 0 and that the nearest other points to x = −1

3 that have form
± 1
n are x = −1

2 and x = −1
4 . Notice that on the interval (−1

2 ,−
1
4) that −1

3 is the only x
value in that interval where f(x) = 0 though. So if 0 < δ < 1

12 , then |x− (−1
3)| < δ with

x 6= −1
3 gives f(x) = 1 so that |f(x) − 1| = 0. Thus limx→− 1

3
f(x) = 1. See the picture

below. It is important that when taking limits, we don’t actually care about the function
value at the limiting x value. We just care about near that x value.

(c) lim
x→0

f(x) does not exist. For any δ > 0 there will be x values in the interval (0, δ) such

that f(x) = 0 and some where f(x) = 1. Thus let L ∈ R be some candidate limiting value
for f , let ε = 1

2 , and let δ > 0 be any positive number. Then there are x1, x2 ∈ (0, δ) such
that f(x1) = 0 and f(x2) = 1. No matter what the value of L is, either |f(x1)− L| ≥ 1

2
or |f(x2)−L| ≥ 1

2 . Therefore |f(x)−L| ≥ 1
2 for some x ∈ (0, δ) no matter how small we

set δ.
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