SOLUTIONS

1. (10 pts) Let $a_{n}=(-1)^{n}+\frac{1}{n}$. Find $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$. You do not need to write a proof, but you should show clear work and reasoning to justify your answer. Find a convergent subsequence.

Solution:

limsup:

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup \left\{a_{k} \mid k \geq n\right\} \\
&=\lim _{n \rightarrow \infty} \sup \left\{\left.(-1)^{k}+\frac{1}{k} \right\rvert\, k \geq n\right\} \\
&=\left\{\begin{array}{l}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \text { if } n \text { even } \\
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right) \text { if } n \text { odd } \\
\end{array}\right. \\
&=1
\end{aligned}
$$

Since $\frac{1}{k}$ is decreasing, then the supremum is achieved at the first even k that is greater than or equal to n.
liminf:
$\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \inf \left\{a_{k} \mid k \geq n\right\}=\lim _{n \rightarrow \infty} \sup \left\{\left.(-1)^{k}+\frac{1}{k} \right\rvert\, k \geq n\right\}=\lim _{n \rightarrow \infty}(-1+0)=-1$
For any number $a>-1$, there will an odd $k \in \mathbb{N}$ such that $a_{k}=(-1)^{k}+\frac{1}{k}=-1+\frac{1}{k}<a$ so a cannot be the infimum.

convergent subsequence:

If we let $b_{n}=a_{2 n}$, then $b_{n}=(-1)^{2 n}+\frac{1}{2 n}=1+\frac{1}{2 n}$ and this sequence converges to 1 .
2. (20 pts) Let $f(x)=\frac{x^{2}+x-6}{5 x+10}$. Evaluate $\lim _{x \rightarrow \infty} f(x)$. Prove your result directly using only Section 3.1 definitions.

Solution:

For x large, I suspect $f(x) \approx \frac{1}{5} x$ simply by considering the leading power of x on top and bottom of the rational function. So we should be able to find a constant C such that $f(x) \geq C x$ is eventually true. This works if $C<\frac{1}{5}$. I will use $C=\frac{1}{10}$ since it simplifies things nicely.
$f(x)=\frac{x^{2}+x-6}{5 x+10} \geq \frac{1}{10} x$ simplifies to $x \geq \sqrt{12}$.
Now we also want $\frac{1}{10} x>K$ which gives $x>10 K$.
So given any $K>0$, choose $M>\max \{10 K, \sqrt{12}\}$, then $x \geq M$ implies that

$$
f(x) \geq \frac{1}{10} x \geq \frac{1}{10} M>\frac{1}{10} 10 K=K
$$

3. (20 pts) Let $f(x)=\frac{x^{2}-4}{x-2}$. Evaluate $\lim _{x \rightarrow 2} f(x)$. Prove your result directly using only Section 3.2 definitions.

Solution:

Note that $f(x)=\frac{(x-2)(x+2)}{x-2}=x+2$ as long as $x \neq 2$. We suspect that $f(x) \rightarrow 4$ as $x \rightarrow 2$. So we wish to find a δ such that $|f(x)-4|<\epsilon$ when $0<|x-2|<\delta$. Note that $x \neq 2$ holds always since $2 \notin \operatorname{Dom}(f)$, and $0<|x-2|<\delta$ requires $x \neq 2$ anyways, so we are good to go.
$|f(x)-4|=|x-2|$ so we can simply let $\delta=\epsilon$.
Proof. Let $\epsilon>0$ and let $\delta=\epsilon$. Then for all $x \in \operatorname{Dom}(f)$ such that $0<|x-2|<\delta=\epsilon$ we have that

$$
\begin{aligned}
|f(x)-4| & =\left|\frac{(x-2)(x+2)}{x-2}-4\right| \\
& =|(x+2)-4| \quad(\text { since } x \neq 2) \\
& =|x-2| \\
& <\delta \\
& =\epsilon
\end{aligned}
$$

Thus $f(x)$ goes to 4 as x goes to 2 .

