SOLUTIONS

1. (10 pts) Let $a_n = (-1)^n + \frac{1}{n}$. Find $\limsup_{n \to \infty} a_n$ and $\liminf_{n \to \infty} a_n$. You do not need to write a proof, but you should show clear work and reasoning to justify your answer. Find a convergent subsequence.

Solution:

limsup:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup\{a_k \mid k \ge n\}$$
$$= \lim_{n \to \infty} \sup\left\{(-1)^k + \frac{1}{k} \mid k \ge n\right\}$$
$$= \begin{cases} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) & \text{if } n \text{ even} \\\\ \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right) & \text{if } n \text{ odd} \end{cases}$$
$$= 1$$

Since $\frac{1}{k}$ is decreasing, then the supremum is achieved at the first even k that is greater than or equal to n.

liminf:

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf\{a_k \mid k \ge n\} = \lim_{n \to \infty} \sup\left\{(-1)^k + \frac{1}{k} \mid k \ge n\right\} = \lim_{n \to \infty} (-1+0) = -1$$

For any number a > -1, there will an odd $k \in \mathbb{N}$ such that $a_k = (-1)^k + \frac{1}{k} = -1 + \frac{1}{k} < a$ so a cannot be the infimum.

convergent subsequence: If we let $b_n = a_{2n}$, then $b_n = (-1)^{2n} + \frac{1}{2n} = 1 + \frac{1}{2n}$ and this sequence converges to 1.

2. (20 pts) Let $f(x) = \frac{x^2 + x - 6}{5x + 10}$. Evaluate $\lim_{x \to \infty} f(x)$. Prove your result directly using only Section 3.1 definitions. Solution:

For x large, I suspect $f(x) \approx \frac{1}{5}x$ simply by considering the leading power of x on top and bottom of the rational function. So we should be able to find a constant C such that $f(x) \ge Cx$ is eventually true. This works if $C < \frac{1}{5}$. I will use $C = \frac{1}{10}$ since it simplifies things nicely. $f(x) = \frac{x^2 + x - 6}{5x + 10} \ge \frac{1}{10}x$ simplifies to $x \ge \sqrt{12}$. Now we also want $\frac{1}{10}x > K$ which gives x > 10K. So given any K > 0, choose $M > \max\{10K, \sqrt{12}\}$, then $x \ge M$ implies that

$$f(x) \ge \frac{1}{10}x \ge \frac{1}{10}M > \frac{1}{10}10K = K$$

3. (20 pts) Let $f(x) = \frac{x^2-4}{x-2}$. Evaluate $\lim_{x \to 2} f(x)$. Prove your result directly using only Section 3.2 definitions. Solution:

Note that $f(x) = \frac{(x-2)(x+2)}{x-2} = x+2$ as long as $x \neq 2$. We suspect that $f(x) \to 4$ as $x \to 2$. So we wish to find a δ such that $|f(x) - 4| < \epsilon$ when $0 < |x - 2| < \delta$. Note that $x \neq 2$ holds always since $2 \notin Dom(f)$, and $0 < |x - 2| < \delta$ requires $x \neq 2$ anyways, so we are good to go. |f(x) - 4| = |x - 2| so we can simply let $\delta = \epsilon$.

Proof. Let $\epsilon > 0$ and let $\delta = \epsilon$. Then for all $x \in Dom(f)$ such that $0 < |x - 2| < \delta = \epsilon$ we have that

$$|f(x) - 4| = \left| \frac{(x-2)(x+2)}{x-2} - 4 \right|$$

= $|(x+2) - 4|$ (since $x \neq 2$)
= $|x-2|$
 $< \delta$
= ϵ

Thus f(x) goes to 4 as x goes to 2.