Please answer the questions below. I prefer to have your file scanned and saved as a single pdf and submitted to Blackboard.

Name the pdf file: hw06_math413_lastname.pdf with "lastname" of course replaced by your last name.

1. Consider the following functions and determine where they are continuous. Prove your results using the definition of continuity.

$$
\begin{aligned}
& f(x)= \begin{cases}0 & \text { if } x=0 \\
1 & \text { if } 1 \leq x<2 \\
2 & \text { if } x>2\end{cases} \\
& g(x)= \begin{cases}x & \text { if } x<1 \\
1 & \text { if } 1 \leq x<2 \\
2 & \text { if } x \geq 2\end{cases}
\end{aligned}
$$

2. Section 4.1, Exercise 5(a).
3. Section 4.1, Exercise 5(b) and (e). (Hint: Consider the sequential definition of function limits. and look at the relevant results for limits of sequences.)
4. (Extension of previous problem) If f is continuous at $x=a$ and $f(a)>0$, prove that $[f(x)]^{r}$ is continuous at $x=a$ for $r \in \mathbb{R}$. (Hint: Consider the sequential definition of function limits, and look at my supplemental notes on exponentiation of sequences.)
5. Section 4.1, Exercise 6(a-e). You don't need to give full proofs, but you should show some valid reasoning.
6. (Optional, extra credit) Prove that the exponential function $f(x)=b^{x}$, with $b>0$ a real constant, is continuous on \mathbb{R}. That is if $a \in \mathbb{R}$ prove that $\lim _{x \rightarrow a} b^{x}=b^{a}$. This is part of Section 4.1, Exercise 11(a). (Hints: Try the case for $b>1$ first and consider how b^{a} is defined for both rationals and irrationals. See my supplementary notes on exponentiation.)
Here are some steps that work:
(a) Consider the case $b=1$ which should be easy.
(b) Show that $\lim _{x \rightarrow 0} b^{x}=b^{0}=1$ by using the sequential characterization of limits. If x_{n} is an arbitrary sequence converging to 0 , then note that there is a subsequence of $\left\{x_{n}\right\}$ given by $y_{n}=x_{f(n)}$ such that $\left|y_{n}\right|<\frac{1}{n}$. What can you say about $b^{\left|y_{n}\right|}$?
(c) Now show that $\lim _{x \rightarrow a} b^{x-a}=1$. Thus it should give $b^{-a} \cdot \lim _{x \rightarrow a} b^{x}$. Do this by arguing that $\lim _{x \rightarrow a} x-a=0$ and using the previous step.
(d) Now consider the case $0<b<1$ by noting that $\frac{1}{b}>1$ and apply the previous steps. Use known theorems about limits of functions, specifically limits of ratios of functions.
