Please answer the questions below. I prefer to have your file scanned and saved as a single pdf and submitted to Blackboard.

Name the pdf file: hw07_math413_lastname.pdf with "lastname" of course replaced by your last name.

1. Section 4.4 Exercise 1(d). (Hint: First prove that $\sqrt[3]{x}-\sqrt[3]{t} \leq \sqrt[3]{x-t}$ for $x>t \geq 0$. Then prove that $f(x)=\sqrt[3]{x}$ is uniformly continuous on $[0, \infty)$ and $(-\infty, 0]$. Then since it is continuous at 0 you get that it is uniformly continuous on $(-\infty, 0] \cup[0, \infty)=\mathbb{R}$. There are other ways to solve this problem too, this is just a suggested route.)
2. Show that $f(x)=x^{2}$ is uniformly continuous on $[0,5)$. Directly us the definition of uniform continuity.
3. Show that $f(x)=\frac{1}{x-1}$ is not uniformly continuous on ($1, \infty$). (Hint: Find sequences x_{n} and t_{n} that work with Remark 4.4.4.)
4. (optional, bonus) Show that $f(x)=e^{x}$ is not uniformly continuous on \mathbb{R}. (Hint: Consult my supplemental notes on the natural exponential. Argue that $e^{n}>2^{n} \geq n^{2}$ for $n \in \mathbb{N}$. Then use $t_{n}=n$ and $x_{n}=n+\frac{1}{n}$ and show that $f\left(x_{n}\right)-f\left(t_{n}\right)=e^{n}\left(e^{\frac{1}{n}}-1\right)$. Then consult my supplemental notes on the natural exponential Theorem 6 that shows $\left(1+\frac{1}{n}\right)^{n}$ is increasing and argue that $e^{\frac{1}{n}} \geq 1+\frac{1}{n}$. Finally, put this all together to get that f is not uniformly continuous using this sequential characterization.)
