SOLUTIONS

1. Consider the following functions and determine where they are continuous. Prove your results using the definition of continuity.

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } 1 \le x < 2\\ 2 & \text{if } x > 2 \end{cases}$$

Solution:

x = 0 is an isolated point, so f is continuous there. All x-values near x = 1 that are in the domain will give f(x) = 1, so f is clearly continuous there. There is also no problem at x = 2 since that is not part of the domain. Thus f is a continuous function.

Let $\epsilon > 0$.

<u>Case I:</u> Given a = 0 and let $0 < \delta < 1$. Then $x \in (-\delta, \delta)$ in the domain implies x = 0 also. Thus f(x) = f(0) = 0 and hence $|f(x) - f(0)| = 0 < \epsilon$.

<u>Case II</u>: Given a = 1, let $0 < \delta < 1$. Then $x \in [1, 1 + \delta)$ gives f(x) = 1 and hence $|f(x) - f(1)| = 0 < \epsilon$.

<u>Case III:</u> Given a such that 1 < a < 2, let $\delta = \min\{|x - 1|/2, |x - 2|/2\}$. Then $x \in (a - \delta, a + \delta)$ gives f(x) = 1 and hence $|f(x) - f(a)| = 0 < \epsilon$.

<u>Case IV:</u> Given a such that a > 2, let $\delta = |x - 2|/2$. Then $x \in (a - \delta, a + \delta)$ gives f(x) = 2 and hence $|f(x) - f(a)| = 0 < \epsilon$.

Thus f is continuous at every point of its domain and so is a continuous function.

$$g(x) = \begin{cases} x & \text{if } x < 1\\ 1 & \text{if } 1 \le x < 2\\ 2 & \text{if } x \ge 2 \end{cases}$$

Solution:

We only need to consider what happens at x = 1 and at x = 2 since we know that h(x) = x is a continuous polynomial, and that g(x) = f(x) above when $x \ge 1$ except for x = 2.

<u>Case I:</u> Given a = 1, let $\delta = \min\{1, \epsilon\}$. Then $x \in (1 - \delta, 1 + \delta)$ gives f(x) = 1 or f(x) = x. If x < 1, then $|f(x) - f(1)| = |x - 1| < \delta \le \epsilon$. If $x \ge 1$, then $|f(x) - f(1)| = 0 < \epsilon$. So f is continuous at x = 1.

<u>Case II:</u> Let $\epsilon < 1$ be an arbitrary positive number. Given a = 2, let $\delta > 0$. Then $x \in (2 - \delta, 2 + \delta)$ in the domain will always contain some x < 2 with f(x) = 1 satisfying $|f(x) - f(2)| = |1 - 2| = 1 > \epsilon$. Thus f is not continuous at x = 2.

Therefore g is **not** a continuous function.

2. Section 4.1, Exercise 5(a).

Solution:

We know that $\lim_{x\to a} f(x) = f(a)$ thus $\lim_{x\to a} |f(x)| = |f(a)|$ by Theorem 3.2.5.

Alternatively, note that if $|f(x) - f(a)| < \epsilon$, then $f(a) - \epsilon < f(x) < f(a) + \epsilon$. Assume that f(a) > 0 and choose $\delta > 0$ small enough so that f(a)/2 < f(x) < 3f(a)/2. Thus for $|x - a| < \delta$, f(x) must also be positive, hence $||f(x)| - |f(a)|| = |f(x) - f(a)| < \epsilon$.

A similar argument works for f(a) < 0 so that 3f(a)/2 < f(x) < f(a)/2 eventually.

If f(a) = 0, then eventually $|f(x)| < \epsilon$.

3. Section 4.1, Exercise 5(b) and (e). (Hint: Consider the sequential definition of function limits. and look at the relevant results for limits of sequences.)

Solution:

We know that $\lim_{x\to a} f(x) = f(a)$ thus $\lim_{x\to a} \sqrt{f(x)} = \sqrt{f(a)}$ and $\lim_{x\to a} [f(x)]^n = [f(a)]^n$ by Theorem 3.2.5.

Alternatively, let x_n be an arbitrary sequence in the domain of f that converges to a. Then $f(x_n)$ is a sequence that converges to f(a) since f is continuous at a. Now, by properties of convergent sequences, Theorem 2.2.1 gives us that $\sqrt{f(x_n)}$ converges to $\sqrt{f(a)}$ and $[f(x_n)]^k$ converges to $[f(a)]^k$ (note the use of k here as a fixed arbitrary natural number power so as to not confuse it with the sequence index).

4. (Extension of previous problem) If f is continuous at x = a and f(a) > 0, prove that $[f(x)]^r$ is continuous at x = a for $r \in \mathbb{R}$. (Hint: Consider the sequential definition of function limits, and look at my supplemental notes on exponentiation of sequences.)

Solution:

Note that it is important that f(x) > 0 for all $x \in Dom(f)$ otherwise $[f(x)]^r$ may not be defined for some x. I should have stated that in the problem.

Let x_n be an arbitrary sequence in the domain of f that converges to a. Then $f(x_n)$ is a sequence that converges to f(a) since f is continuous at a.

See my supplemental notes on rational and irrational exponentiation of sequences. From those notes, we get that $[f(x_n)]^r$ converges to $[f(a)]^r$. Thus $[f(x)]^r$ is continuous at x = a.

5. Section 4.1, Exercise 6(a-e). You don't need to give full proofs, but you should show some valid reasoning.

Solution:

(a) f bounded on [a, b] implies that f is continuous on [a, b].

False. Counterexample: $f(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & 1 \le x \le 2 \end{cases}$ is bounded but not continuous on [0, 2].

(b) f continuous on (a, b) implies that f is bounded on (a, b).

False. Counterexample: $f(x) = \frac{1}{x}$ on (0, 1) is continuous but unbounded.

(c) $[f(x)]^2$ continuous on (a, b) implies that f is continuous on (a, b).

False. Counterexample: $f(x) = \begin{cases} -1 & 0 < x < 1\\ 1 & 1 \le x < 2 \end{cases}$ $[f(x)]^2 = 1$ on (0, 2) is continuous, but f is not.

(d) f and g not continuous on (a, b) implies that fg is not continuous on (a, b).

False. Counterexample: Consider f above and let g = f so that f^2 is continuous. Of course, this is somewhat trivial, but other more complicated examples could be constructed too.

(e) f and g not continuous on (a, b) implies that f + g is not continuous on (a, b).

False. Counterexample: take f as above, but let g = -f, then (f + g)(x) = 0 on (0, 2).

6. (Optional, extra credit) Prove that the exponential function $f(x) = b^x$, with b > 0 a real constant, is continuous on \mathbb{R} . That is if $a \in \mathbb{R}$ prove that $\lim_{x \to a} b^x = b^a$. This is part of Section 4.1, Exercise 11(a). (*Hints: Try the case for* b > 1 first and consider how b^a is defined for both rationals and irrationals. See my supplementary notes on exponentiation.)

Here are some steps that work:

- (a) Consider the case b = 1 which should be easy.
- (b) Show that $\lim_{x\to 0} b^x = b^0 = 1$ by using the sequential characterization of limits. If x_n is an arbitrary sequence converging to 0, then note that there is a subsequence of $\{x_n\}$ given by $y_n = x_{f(n)}$ such that $|y_n| < \frac{1}{n}$. What can you say about $b^{|y_n|}$?
- (c) Now show that $\lim_{x\to a} b^{x-a} = 1$. Thus it should give $b^{-a} \cdot \lim_{x\to a} b^x$. Do this by arguing that $\lim_{x\to a} x a = 0$ and using the previous step.
- (d) Now consider the case 0 < b < 1 by noting that $\frac{1}{b} > 1$ and apply the previous steps. Use known theorems about limits of functions, specifically limits of ratios of functions.

Solution:

If b = 1, then $b^x = 1$ for all $x \in \mathbb{R}$, and is thus continuous.

We'll only consider b > 1 since if 0 < b < 1, then $b^x = \frac{1}{c^x}$ for some c > 1 thus continuity of c^x implies continuity of $b^x = \frac{1}{c^x}$ by Theorem 4.1.8(c).

Let b > 1, and we will show that $\lim_{x\to 0} b^x = b^0 = 1$. Consider a sequence x_n which converges to zero. Then there is a subsequence $|x_{n_k}| \leq \frac{1}{k}$ for all $k \in \mathbb{N}$. We then have that $0 < b^{x_{n_k}} \leq b^{1/k}$. We know that $b^{1/k}$ converges to 1 as $k \to \infty$ (see the 3rd theorem in my supplemental notes on exponentiation of sequences). Thus by a squeeze, $b^{x_{n_k}}$ converges to 1 as $k \to \infty$. This implies that b^{x_n} converges to 1 as $n \to \infty$. The sequence x_n can be thought of as being composed of two subsequences, one, purely negative, and one purely positive. If there are infinitely-many positive and negative terms, then the above argument works on them individually and thus on x_n overall. This is a bit of a hand-wavey explanation, but if you want more detail, just ask me.

Now let $a \in \mathbb{R}$. It is clear that $\lim_{x\to a} b^{x-a} = 1$ since $x - a \to 0$ as $x \to a$. But we also must have that $\lim_{x\to a} b^{x-a} = \lim_{x\to a} b^x \cdot \lim_{x\to a} b^{-a}$. Thus $1 = \lim_{x\to a} b^x \cdot b^{-a}$ giving us that $\lim_{x\to a} b^x = b^a$. This shows that b^x is continuous at x = a.