SOLUTIONS

1. Consider the following functions and determine where they are continuous. Prove your results using the definition of continuity.

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } 1 \leq x<2 \\ 2 & \text { if } x>2\end{cases}
$$

Solution:

$x=0$ is an isolated point, so f is continuous there. All x-values near $x=1$ that are in the domain will give $f(x)=1$, so f is clearly continuous there. There is also no problem at $x=2$ since thata is not part of the domain. Thus f is a continuous function.

Let $\epsilon>0$.
Case I: Given $a=0$ and let $0<\delta<1$. Then $x \in(-\delta, \delta)$ in the domain implies $x=0$ also. Thus $f(x)=f(0)=0$ and hence $|f(x)-f(0)|=0<\epsilon$.

Case II: Given $a=1$, let $0<\delta<1$. Then $x \in[1,1+\delta)$ gives $f(x)=1$ and hence $|f(x)-f(1)|=0<\epsilon$.

Case III: Given a such that $1<a<2$, let $\delta=\min \{|x-1| / 2,|x-2| / 2\}$. Then $x \in(a-\delta, a+\delta)$ gives $f(x)=1$ and hence $|f(x)-f(a)|=0<\epsilon$.

Case IV: Given a such that $a>2$, let $\delta=|x-2| / 2$. Then $x \in(a-\delta, a+\delta)$ gives $f(x)=2$ and hence $|f(x)-f(a)|=0<\epsilon$.

Thus f is continuous at every point of its domain and so is a continuous function.

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 1 & \text { if } 1 \leq x<2 \\ 2 & \text { if } x \geq 2\end{cases}
$$

Solution:

We only need to consider what happens at $x=1$ and at $x=2$ since we know that $h(x)=x$ is a continuous polynomial, and that $g(x)=f(x)$ above when $x \geq 1$ except for $x=2$.
Case I: Given $a=1$, let $\delta=\min \{1, \epsilon\}$. Then $x \in(1-\delta, 1+\delta)$ gives $f(x)=1$ or $f(x)=x$. If $x<1$, then $|f(x)-f(1)|=|x-1|<\delta \leq \epsilon$. If $x \geq 1$, then $|f(x)-f(1)|=0<\epsilon$. So f is continuous at $x=1$.

Case II: Let $\epsilon<1$ be an arbitrary positive number. Given $a=2$, let $\delta>0$. Then $x \in(2-\delta, 2+\delta)$ in the domain will always contain some $x<2$ with $f(x)=1$ satisfying $|f(x)-f(2)|=|1-2|=1>\epsilon$. Thus f is not continuous at $x=2$.

Therefore g is not a continuous function.
2. Section 4.1, Exercise 5(a).

Solution:

We know that $\lim _{x \rightarrow a} f(x)=f(a)$ thus $\lim _{x \rightarrow a}|f(x)|=|f(a)|$ by Theorem 3.2.5.
Alternatively, note that if $|f(x)-f(a)|<\epsilon$, then $f(a)-\epsilon<f(x)<f(a)+\epsilon$. Assume that $f(a)>0$ and choose $\delta>0$ small enough so that $f(a) / 2<f(x)<3 f(a) / 2$. Thus for $|x-a|<\delta, f(x)$ must also be positive, hence $||f(x)|-|f(a)||=|f(x)-f(a)|<\epsilon$.

A similar argument works for $f(a)<0$ so that $3 f(a) / 2<f(x)<f(a) / 2$ eventually.
If $f(a)=0$, then eventually $|f(x)|<\epsilon$.
3. Section 4.1, Exercise 5(b) and (e). (Hint: Consider the sequential definition of function limits. and look at the relevant results for limits of sequences.)

Solution:

We know that $\lim _{x \rightarrow a} f(x)=f(a)$ thus $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{f(a)}$ and $\lim _{x \rightarrow a}[f(x)]^{n}=$ $[f(a)]^{n}$ by Theorem 3.2.5.

Alternatively, let x_{n} be an arbitrary sequence in the domain of f that converges to a. Then $f\left(x_{n}\right)$ is a sequence that converges to $f(a)$ since f is continuous at a. Now, by properties of convergent sequences, Theorem 2.2 .1 gives us that $\sqrt{f\left(x_{n}\right)}$ converges to $\sqrt{f(a)}$ and $\left[f\left(x_{n}\right)\right]^{k}$ converges to $[f(a)]^{k}$ (note the use of k here as a fixed arbitrary natural number power so as to not confuse it with the sequence index).
4. (Extension of previous problem) If f is continuous at $x=a$ and $f(a)>0$, prove that $[f(x)]^{r}$ is continuous at $x=a$ for $r \in \mathbb{R}$. (Hint: Consider the sequential definition of function limits, and look at my supplemental notes on exponentiation of sequences.)

Solution:

Note that it is important that $f(x)>0$ for all $x \in \operatorname{Dom}(f)$ otherwise $[f(x)]^{r}$ may not be defined for some x. I should have stated that in the problem.

Let x_{n} be an arbitrary sequence in the domain of f that converges to a. Then $f\left(x_{n}\right)$ is a sequence that converges to $f(a)$ since f is continuous at a.

See my supplemental notes on rational and irrational exponentiation of sequences. From those notes, we get that $\left[f\left(x_{n}\right)\right]^{r}$ converges to $[f(a)]^{r}$. Thus $[f(x)]^{r}$ is continuous at $x=a$.
5. Section 4.1, Exercise 6(a-e). You don't need to give full proofs, but you should show some valid reasoning.

Solution:
(a) f bounded on $[a, b]$ implies that f is continuous on $[a, b]$.

False. Counterexample: $f(x)=\left\{\begin{array}{ll}0 & 0 \leq x<1 \\ 1 & 1 \leq x \leq 2\end{array}\right.$ is bounded but not continuous on [0, 2].
(b) f continuous on (a, b) implies that f is bounded on (a, b).

False. Counterexample: $f(x)=\frac{1}{x}$ on $(0,1)$ is continuous but unbounded.
(c) $[f(x)]^{2}$ continuous on (a, b) implies that f is continuous on (a, b).

False. Counterexample: $f(x)= \begin{cases}-1 & 0<x<1 \\ 1 & 1 \leq x<2\end{cases}$
$[f(x)]^{2}=1$ on $(0,2)$ is continuous, but f is not.
(d) f and g not continuous on (a, b) implies that $f g$ is not continuous on (a, b).

False. Counterexample: Consider f above and let $g=f$ so that f^{2} is continuous. Of course, this is somewhat trivial, but other more complicated examples could be constructed too.
(e) f and g not continuous on (a, b) implies that $f+g$ is not continuous on (a, b).

False. Counterexample: take f as above, but let $g=-f$, then $(f+g)(x)=0$ on $(0,2)$.
6. (Optional, extra credit) Prove that the exponential function $f(x)=b^{x}$, with $b>0$ a real constant, is continuous on \mathbb{R}. That is if $a \in \mathbb{R}$ prove that $\lim _{x \rightarrow a} b^{x}=b^{a}$. This is part of Section 4.1, Exercise 11(a). (Hints: Try the case for $b>1$ first and consider how b^{a} is defined for both rationals and irrationals. See my supplementary notes on exponentiation.)
Here are some steps that work:
(a) Consider the case $b=1$ which should be easy.
(b) Show that $\lim _{x \rightarrow 0} b^{x}=b^{0}=1$ by using the sequential characterization of limits. If x_{n} is an arbitrary sequence converging to 0 , then note that there is a subsequence of $\left\{x_{n}\right\}$ given by $y_{n}=x_{f(n)}$ such that $\left|y_{n}\right|<\frac{1}{n}$. What can you say about $b^{\left|y_{n}\right|}$?
(c) Now show that $\lim _{x \rightarrow a} b^{x-a}=1$. Thus it should give $b^{-a} \cdot \lim _{x \rightarrow a} b^{x}$. Do this by arguing that $\lim _{x \rightarrow a} x-a=0$ and using the previous step.
(d) Now consider the case $0<b<1$ by noting that $\frac{1}{b}>1$ and apply the previous steps. Use known theorems about limits of functions, specifically limits of ratios of functions.

Solution:

If $b=1$, then $b^{x}=1$ for all $x \in \mathbb{R}$, and is thus continuous.
We'll only consider $b>1$ since if $0<b<1$, then $b^{x}=\frac{1}{c^{x}}$ for some $c>1$ thus continuity of c^{x} implies continuity of $b^{x}=\frac{1}{c^{x}}$ by Theorem 4.1.8(c).

Let $b>1$, and we will show that $\lim _{x \rightarrow 0} b^{x}=b^{0}=1$. Consider a sequence x_{n} which converges to zero. Then there is a subsequence $\left|x_{n_{k}}\right| \leq \frac{1}{k}$ for all $k \in \mathbb{N}$. We then have that $0<b^{x_{n_{k}}} \leq b^{1 / k}$. We know that $b^{1 / k}$ converges to 1 as $k \rightarrow \infty$ (see the 3rd theorem in my supplemental notes on exponentiation of sequences). Thus by a squeeze, $b^{x_{n_{k}}}$ converges to 1 as $k \rightarrow \infty$. This implies that $b^{x_{n}}$ converges to 1 as $n \rightarrow \infty$. The sequence x_{n} can be thought of as being composed of two subsequences, one, purely negative, and one purely positive. If there are infinitely-many positive and negative terms, then the above argument works on them individually and thus on x_{n} overall. This is a bit of a hand-wavey explanation, but if you want more detail, just ask me.

Now let $a \in \mathbb{R}$. It is clear that $\lim _{x \rightarrow a} b^{x-a}=1$ since $x-a \rightarrow 0$ as $x \rightarrow a$. But we also must have that $\lim _{x \rightarrow a} b^{x-a}=\lim _{x \rightarrow a} b^{x} \cdot \lim _{x \rightarrow a} b^{-a}$. Thus $1=\lim _{x \rightarrow a} b^{x} \cdot b^{-a}$ giving us that $\lim _{x \rightarrow a} b^{x}=b^{a}$. This shows that b^{x} is continuous at $x=a$.

