Please answer the questions below. I prefer to have your file scanned and saved as a single pdf and submitted to Blackboard.

Name the pdf file: hw07_math413_lastname.pdf with "lastname" of course replaced by your last name.

1. Section 4.4 Exercise 1(d). (Hint: First prove that $\sqrt[3]{x}-\sqrt[3]{t} \leq \sqrt[3]{x-t}$ for $x>t \geq 0$. Then prove that $f(x)=\sqrt[3]{x}$ is uniformly continuous on $[0, \infty)$ and $(-\infty, 0]$. Then since it is continuous at 0 you get that it is uniformly continuous on $(-\infty, 0] \cup[0, \infty)=\mathbb{R}$. There are other ways to solve this problem too, this is just a suggested route.)

Solution:

Let $0 \leq t<x$. Then $\sqrt[3]{x} \leq \sqrt[3]{x-t}+\sqrt[3]{t}$ can be seen by cubing both sides. This gives $\sqrt[3]{x}-\sqrt[3]{t} \leq \sqrt[3]{x-t}$ and hence $|\sqrt[3]{x}-\sqrt[3]{t}| \leq \sqrt[3]{|x-t|}$.

Let $t<x \leq 0$. Then $|\sqrt[3]{x}-\sqrt[3]{t}|=\sqrt[3]{x}-\sqrt[3]{t}=-\sqrt[3]{|x|}+\sqrt[3]{|t|}$. Since $0 \leq|x|<|t|$ and the above, we have that $-\sqrt[3]{|x|}+\sqrt[3]{|t|} \leq \sqrt[3]{|t|-|x|}=\sqrt[3]{-t+x}=\sqrt[3]{|x-t|}$. Thus $|\sqrt[3]{x}-\sqrt[3]{t}| \leq \sqrt[3]{|x-t|}$ also holds.

Let $\epsilon>0$ and $\delta=\epsilon^{3}$. Then $|x-t|<\delta$ and either $x, t \in[0, \infty)$ or $x, t \in(-\infty, 0]$ implies that $|\sqrt[3]{x}-\sqrt[3]{t}| \leq \sqrt[3]{|x-t|}<\sqrt[3]{\delta}=\epsilon$. Thus $f(x)=\sqrt[3]{x}$ is uniformly continuous on $[0, \infty)$ and $(-\infty, 0]$.

Since it is also continuous at $x=0$, by the theorem I gave you in class, it is uniformly continuous on $(-\infty, 0] \cup[0, \infty)=\mathbb{R}$.

Alternative argument: Let $\epsilon>0$ and $\delta=\frac{1}{8} \epsilon^{3}$. Then $|x-t|<\delta$ implies $x, t \in(-\infty, 0]$, $x, t \in[0, \infty)$, or $x, t \in\left(-\frac{1}{8} \epsilon^{3}, \frac{1}{8} \epsilon^{3}\right)$. In the first two cases, we get $|\sqrt[3]{x}-\sqrt[3]{t}| \leq \sqrt[3]{|x-t|}<$ $\sqrt[3]{\delta}=\epsilon$ as before, and in the last case we get $|\sqrt[3]{x}-\sqrt[3]{t}| \leq|\sqrt[3]{x}|+|\sqrt[3]{t}|<\left|\sqrt[3]{\frac{1}{8} \epsilon^{3}}\right|+\left|\sqrt[3]{\frac{1}{8} \epsilon^{3}}\right|=$ ϵ. This way we don't need to use the theorem I gave you in class.
2. Show that $f(x)=x^{2}$ is uniformly continuous on $[0,5)$. Directly us the definition of uniform continuity.

Solution:

Let $\epsilon>0$. We have, since $x, t<5$ that $\left|x^{2}-t^{2}\right|=|x-t| \cdot|x+t| \leq 10|x-t|$ so let $\delta=\frac{\epsilon}{10}$. Then $|x-t|<\delta$ implies $|f(x)-f(t)|<\epsilon$.
3. Show that $f(x)=\frac{1}{x-1}$ is not uniformly continuous on ($1, \infty$). (Hint: Find sequences x_{n} and t_{n} that work with Remark 4.4.4.)

Solution:

Let $x_{n}=1+\frac{1}{n}$ and $t_{n}=1+\frac{2}{n}$. Then $\left|x_{n}-t_{n}\right|=\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(t_{n}\right)\right|=\left|\frac{n}{1}-\frac{n}{2}\right|=\frac{n}{2}>\epsilon$ for n sufficiently large no matter what we fix $\epsilon>0$ as.
4. (optional, bonus) Show that $f(x)=e^{x}$ is not uniformly continuous on \mathbb{R}. (Hint: Consult my supplemental notes on the natural exponential. Argue that $e^{n}>2^{n} \geq n^{2}$ for $n \in \mathbb{N}$. Then use $t_{n}=n$ and $x_{n}=n+\frac{1}{n}$ and show that $f\left(x_{n}\right)-f\left(t_{n}\right)=e^{n}\left(e^{\frac{1}{n}}-1\right)$. Then consult my supplemental notes on the natural exponential Theorem 6 that shows $\left(1+\frac{1}{n}\right)^{n}$ is increasing and argue that $e^{\frac{1}{n}} \geq 1+\frac{1}{n}$. Finally, put this all together to get that f is not uniformly continuous using this sequential characterization.)
Solution:
Let $x_{n}=n+\frac{1}{n}$ and $t_{n}=n$ so that $\left|x_{n}-t_{n}\right|=\frac{1}{n}$. Now $\left|f\left(x_{n}\right)-f\left(t_{n}\right)\right|=\left|e^{n+\frac{1}{n}}-e^{n}\right|=$ $e^{n}\left(e^{\frac{1}{n}}-1\right)$. Note that $e^{1 / n}>1$, so we are allowed to remove the absolute value bars. Since $\left(1+\frac{1}{n}\right)^{n}$ is increasing and converges to e, we have that $e^{\frac{1}{n}} \geq 1+\frac{1}{n}$. So we put this together to get that $\left|f\left(x_{n}\right)-f\left(t_{n}\right)\right|>\frac{e^{n}}{n}$. Now we also know that $e>2$ thus $e^{n}>2^{n} \geq n^{2}$ for all n. Finally this gives us that $\left|f\left(x_{n}\right)-f\left(t_{n}\right)\right|>\frac{e^{n}}{n}>\frac{n^{2}}{n}=n>\epsilon$ eventually.

