SOLUTIONS

1. Section 4.4, Exercise 5, part (a, b, \& d). Directly use the definition of uniform continuity.

Solution:

If functions f and g are uniformly continuous on their common domain D, prove that
(a) $f \pm g$ is uniformly continuous on D.
(b) $c f$ is uniformly continuous on D for any real constant c.
(d) $f g$ is uniformly continuous on D if f and g are both bounded on D.
(a) Let $\epsilon>0$. Choose $\delta_{1}>0$ such that $|x-t|<\delta_{1}$ implies $|f(x)-f(t)|<\frac{\epsilon}{2}$, and choose $\delta_{2}>0$ such that $|x-t|<\delta_{2}$ implies $|g(x)-g(t)|<\frac{\epsilon}{2}$. Then let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ so that whenever $|x-t|<\delta$ we have that

$$
|(f(x) \pm g(x))-(f(t) \pm g(t))| \leq|f(x)-f(t)|+|g(x)-g(t)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

(b) Assume $c \neq 0$, and let $\epsilon>0$. Let $\delta>0$ such that $|x-t|<\delta$ implies $|f(x)-f(t)|<\frac{\epsilon}{|c|}$. Then it follows that $|c f(x)-c f(t)|<\epsilon$.
(c) Assume $|f(x)| \leq M_{f}$ and $|g(x)| \leq M_{g}$ with M_{f}, M_{g} being two constants. Also let $M=\max \left\{M_{f}, M_{g}\right\}$. Then let $\delta>0$ such that $|x-t|<\delta$ implies that both $|f(x)-f(t)|<$ $\frac{\epsilon}{2 M}$ and $|g(x)-g(t)|<\frac{\epsilon}{2 M}$. Now we have that whenever $|x-t|<\delta$ we get

$$
\begin{aligned}
|f(x) g(x)-f(t) g(t)| & =|f(x) g(x)-f(t) g(x)+f(t) g(x)-f(t) g(t)| \\
& \leq|g(x)| \cdot|f(x)-f(t)|+|f(t)| \cdot|g(x)-g(t)| \\
& \leq M_{g} \cdot|f(x)-f(t)|+M_{f} \cdot|g(x)-g(t)| \\
& <M_{g} \cdot \frac{\epsilon}{2 M}+M_{f} \cdot \frac{\epsilon}{2 M} \\
& <\epsilon
\end{aligned}
$$

2. Section 5.1 Exercise 3(b,e).

Solution:

(b) $f(x)= \begin{cases}x^{2}+1 & x<1 \\ 2 x & x \geq 1\end{cases}$

We can see that $f(1-)=f(1)$ thus f is continuous at $x=1$. Let's check differentiability directly:

$$
\begin{aligned}
\frac{f(1+h)-f(1)}{h} & = \begin{cases}\frac{2(1+h)-2}{h} & h>0 \\
\frac{(1+h)^{2}+1-2}{h} & h<0\end{cases} \\
& = \begin{cases}2 & h>0 \\
2+h & h<0\end{cases} \\
& \xrightarrow{h \rightarrow 0} 2
\end{aligned}
$$

Thus $f^{\prime}(1)=2$ does indeed exist.
(e) $f(x)= \begin{cases}x & \text { for } x \text { rational } \\ 0 & \text { for } x \text { irrational }\end{cases}$

$$
\begin{aligned}
\frac{f(h)-f(0)}{h} & = \begin{cases}\frac{h-0}{h} & \text { for } h \text { rational } \\
\frac{0-0}{h} & \text { for } h \text { irrational }\end{cases} \\
& = \begin{cases}1 & \text { for } h \text { rational } \\
0 & \text { for } h \text { irrational }\end{cases}
\end{aligned}
$$

Thus $f^{\prime}(0)$ does not exist!

As an additional exercise, you should show that the function in (d) is actually differentiable at $x=0$.
3. Section 5.1 Exercise 15.

Solution:

If the function $x f(x)$ has a derivative at $x=a \neq 0$, prove that f is differentiable at $x=a$.
We know that $\lim _{h \rightarrow 0} \frac{(a+h) f(a+h)-a f(a)}{h}$ exists.

$$
\begin{aligned}
\frac{f(a+h)-f(a)}{h} & =\frac{(a+h) f(a+h)-(a+h) f(a)}{(a+h) h} \\
& =\frac{(a+h) f(a+h)-a f(a)-h f(a)}{(a+h) h} \\
& =\frac{(a+h) f(a+h)-a f(a)}{(a+h) h}-\frac{f(a)}{a+h} \\
& \xrightarrow{h \rightarrow 0} \frac{1}{a} \cdot\left(\left.\frac{d}{d x}[x f(x)]\right|_{x=a}\right)-\frac{f(a)}{a}
\end{aligned}
$$

Thus if the derivative of $x f(x)$ at $x=a$ is L, that is, that $\left.\frac{d}{d x}[x f(x)]\right|_{x=a}=L$, then $f^{\prime}(a)=\frac{L}{a}-\frac{f(a)}{a}$.

4. Section 5.2, Exercise 3:

Solution:

If function f is differentiable and c is a real constant, prove that $(c f)^{\prime}(x)=c f^{\prime}(x)$ without using Theorem 5.2.1.

$$
\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h}=c \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c \cdot f^{\prime}(x)
$$

