SOLUTIONS

1. Find the pointwise limit of the sequence of functions $f_{n}(x)=\sqrt[n]{x}$. Prove that the convergence is not uniform.

Solution:

For $0<x$, we have that $\sqrt[n]{x} \rightarrow 1$ as $n \rightarrow \infty$, and at $x=0$ we have $\sqrt[n]{0}=0$.
So the pointwise limit is

$$
f(x)= \begin{cases}0 & x=0 \\ 1 & 0<x\end{cases}
$$

Let $\epsilon=\frac{1}{4}$. Consider the sequence of x-values $x_{n}=\frac{1}{2^{n}}$. We know that the pointwise limit at each of these points, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, is always one. That is, that, $f_{n}\left(x_{k}\right) \rightarrow 1$ as $n \rightarrow \infty$ for any fixed $k \in \mathbb{N}$.

We have that $f_{n}\left(x_{n}\right)=\frac{1}{2}$. So we have constructed a sequence of x-values that will always be exactly $1 / 2$ distance from their individual pointwise limits of one. By Remark 8.2.5(c), this is sufficient to show that the convergence is not uniform. I.e. $\left|f_{n}\left(x_{n}\right)-0\right|=\frac{1}{2}>\epsilon=\frac{1}{4}$ thus the convergence cannot be uniform.
2. Prove that the following sequence of functions is converges uniformly to $f(x)=0$ on $[0, \infty)$.

$$
f_{n}(x)=n x e^{-n^{2} x}
$$

Solution:

The pointwise limit for all x is $f(x)=0$.
We first show that there is an absolute maximum.
$f_{n}^{\prime}(x)=n\left(1-x n^{2}\right) e^{-n^{2} x}$
$f_{n}^{\prime \prime}(x)=n^{3}\left(x n^{2}-2\right) e^{-n^{2} x}$
Thus we have a local max at $x=\frac{1}{n^{2}}$. Therefore $f_{n}(x)=n x e^{-n^{2} x} \leq \frac{1}{n e}<\frac{1}{n}$. We can see that f_{n} is an increasing function to the left of the max and a decreasing function to the right of the max. Furthermore $f_{n}(x)$ goes to zero as x goes to infinity. Thus all we have to consider is this maximum function value and see if we can bound it below an arbitrary ϵ.

Let $\epsilon>0$ and pick any $n^{*}>\frac{1}{\epsilon}$. Then for all $n \geq n^{*}$ we have that $\left|f_{n}(x)-0\right|=n x e^{-n^{2} x} \leq \frac{1}{n e}<\frac{1}{n} \leq \frac{1}{n^{*}}<\epsilon$ for all $x \in[0, \infty)$. Thus f_{n} converges uniformly to the zero function.

