SOLUTIONS

1. (20 pts) Prove that the following function is continuous at $x=0$. Directly use the definition of continuity.

$$
f(x)= \begin{cases}2 x & \text { for } x \in \mathbb{R} \backslash \mathbb{Q} \\ 0 & \text { for } x \in \mathbb{Q}\end{cases}
$$

Solution:

Let $\epsilon>0$ and $\delta=\frac{\epsilon}{2}$. Then when $|x|<\delta$ we have that $f(x)=0<\epsilon$ is x is rational and $|f(x)|=2|x|<2 \delta=\epsilon$ when x is irrational. Thus in either case we get that whenever $|x-0|<\delta$ implies $|f(x)-f(0)|=|f(x)|<\epsilon$ showing that f is indeed continuous at $x=0$.

Note that f is discontinuous at every other real number.
2. (30 pts) Prove that $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $[2,5]$. Directly use the definition of uniform continuity.

Solution:

Let $\epsilon>0$. We wish to find a $\delta>0$ so that $|x-t|<\delta$ implies that $|f(x)-f(t)|<\epsilon$.
Notice that:

$$
|f(x)-f(t)|=\left|\frac{t^{2}-x^{2}}{x^{2} t^{2}}\right|=|x-t| \cdot|x+t| \cdot \frac{1}{x^{2} t^{2}}<|x-t| \cdot 10 \cdot \frac{1}{16}
$$

So we can choose $\delta=\frac{8}{5} \epsilon$.
Now when $|x-t|<\delta=\frac{8}{5} \epsilon$ we get that

$$
|f(x)-f(t)|=|x-t| \cdot|x+t| \cdot \frac{1}{x^{2} t^{2}}<\delta \cdot \frac{5}{8}=\frac{8}{5} \epsilon \cdot \frac{5}{8}=\epsilon
$$

showing that f is indeed uniformly continuous on the given domain.
If the left-hand endpoint of the domain extended to zero f would not be uniformly continuous though, i.e. on ($0, a]$ for any positive a.

Edit: I am seeing many use the fact that $\frac{x+t}{x^{2} t^{2}}$ is bounded by $\frac{1}{4}$ at $x=t=2$. This is correct, but it needs to be justified carefully. The bound I used in my solution above is "conservative" and doesn't require much justification. Here is a way to justify the $\frac{1}{4}$ bound; it uses partial derivatives.

Consider $f(x, t)=\frac{x+t}{x^{2} t^{2}}$. The partial derivative in x is $\frac{\partial f}{\partial x}=-\frac{1}{x^{2} t^{2}}-\frac{2}{x^{3} t}<0$ and thus this function (surface) is decreasing in the positive x-direction. Taking $\frac{\partial f}{\partial t}$ we can see that it is also decreasing in the positive t-direction. Thus on the limited domain we are considering, the maximum does indeed occur at $x=t=2$.

