SOLUTIONS

1. Section 8.1, Exercise 1, part (d).

Solution:

$$
f_{n}(x)=\frac{1}{n} e^{-n^{2} x^{2}} \text { on }[0, \infty)
$$

The pointwise limit is $f(x)=0$ for all x. Notice that $0<e^{-n^{2} x^{2}} \leq 1$ for all $x \in[0, \infty)$ and all $n \in \mathbb{N}$. Thus we have $0<f_{n}(x) \leq \frac{1}{n}$.

In fact this sequence also converges uniformly.

2. Section 8.1, Exercise 3.

Solution:

Suppose that $f_{n}, g_{n}: D \rightarrow \mathbb{R}$ and converge pointwise to f and g respectively. Prove that $f_{n} \pm g_{n}$ converges pointwise to $f \pm g$.

Let $\epsilon>0$ and let $x_{0} \in D$ be an arbitrary point in the domain. Choose n_{1}^{*} so that $n \geq n_{1}^{*}$ implies $\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}$. We know we can do this at each x_{0} since we assume pointwise convergence. Also choose n_{2}^{*} so that $n \geq n_{2}^{*}$ implies $\left|g_{n}\left(x_{0}\right)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2}$. Then $\left|\left(f_{n}\left(x_{0}\right)+g_{n}\left(x_{0}\right)\right)-\left(f\left(x_{0}\right)+g\left(x_{0}\right)\right)\right| \leq\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|+\left|g_{n}\left(x_{0}\right)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}$. Thus $f_{n}+g_{n}$ converges pointwise to $f+g$ at x_{0}.

The proof for $f_{n}-g_{n}$ is nearly identical.
3. Prove that $f_{n}(x)=\frac{x^{n}}{n}$ converges uniformly to $f(x)=0$ on $[0,1]$.

Solution:

Let $\epsilon>0$ and choose $n^{*}>\frac{1}{\epsilon}$. Then for any $x \in[0,1]$ and any $n \geq n^{*}$ we have $\left|f_{n}(x)-0\right|=\frac{x^{n}}{n} \leq \frac{1}{n} \leq \frac{1}{n^{*}}<\epsilon$. Thus f_{n} converges uniformly to $f(x)=0$ on $[0,1]$.

It is important to realize that the convergence is uniform since the argument does not depend on having fixed x to be any particular value. It works well in this case since x is bounded. Of course uniform convergence does not depend in general on x being bounded. Convergence can be uniform on unbounded domains as well.

4. Section 8.2, Exercise 5.

Solution:

If f_{n} and g_{n} are sequences of bounded functions that converge uniformly on D to functions f and g, respectively, prove that the sequence $f_{n} g_{n}$ converges uniformly to $f g$ on D.

We will use the following results:

Definition 8.1.13. A sequence f_{n} is uniformly bounded on D if and only if there exists a real constant K such that $\left|f_{n}(x)\right| \leq K$ for all $x \in D$ and $n \in \mathbb{N}$.

Section 8.2, Exercise 3. If f_{n} is a sequence of bounded functions that converges uniformly to f on D, prove that
(a) f is bounded. (Note that this need not be true if convergence is not uniform. See Exercise 2(d) of Section 8.1.)
(b) f_{n} is uniformly bounded.

Proof of Section 8.2, Exercise 3(a).
Let $\epsilon=1$. Then we know there is an n^{*} such that $n \geq n^{*}$ implies $\left|f_{n}(x)-f(x)\right|<1$ regardless of $x \in D$. In particular $\left|f_{n^{*}}(x)-f(x)\right|<1$ which implies in turn by rearranging that $f_{n^{*}}(x)-1<f(x)<f_{n^{*}}(x)+1$ for all $x \in D$. Since we know that each f_{n} is bounded, then for n^{*} we know there is an $M>0$ such that $-M \leq f_{n^{*}}(x) \leq M$ for all $x \in D$. This gives us that $-M-1<f(x)<M+1$ i.e. that f is bounded by $M+1$.

Note that we only know that each f_{n} is bounded. We do not know that there is a "global constant" that bounds all f_{n} simultaneously yet. That is what the next part is for.

Proof of Section 8.2, Exercise 3(b).
By the above, we have that f is bounded by $M+1$ and that $\left|f_{n}(x)-f(x)\right|<1$ for all $n \geq n^{*}$. Rearranging this gives us that $f(x)-1<f_{n}(x)<f(x)+1$ for all $n \geq n^{*}$. Putting in the bound on f gives $-M-1-1 \leq f(x)-1<f_{n}(x)<f(x)+1 \leq M+1+1$ for all $n \geq n^{*}$, i.e. that $\left|f_{n}(x)\right| \leq M+2$ for all $n \geq n^{*}$.

Then let M_{k} be the bound for f_{k}, for $k=1,2, \ldots, n^{*}-1$. Since it was assumed that the seuqence f_{n} is bounded, we know that each function in the sequence has a bound, thus we can define all of these M_{k} 's. Now take $K=\max \left\{M_{1}, M_{2}, \ldots, M_{n^{*}-1}, M+2\right\}$. We have that K is a bound for all f_{n}, i.e. that $\left|f_{n}(x)\right| \leq K$ for all $n \in \mathbb{N}$ and $x \in D$. Thus K is a uniform bound and the sequence f_{n} is uniformly bounded.
Proof of Section 8.2, Exercise 5. Now on to the actual homework problem!

Since f_{n} and g_{n} are bounded sequences and converge uniformly to f and g, respectively, then we know that f_{n} and g_{n} are uniformly bounded and that f and g are bounded (by the above results just presented). Let K_{f} and K_{g} be the uniform bounds for f_{n} and g_{n} and M_{f} and M_{g} be the bounds for f and g, i.e. that

$$
\begin{gathered}
\left|f_{n}(x)\right| \leq K_{f} \text { and }\left|g_{n}(x)\right| \leq K_{g} \text { for all } n \in \mathbb{N} \text { and } x \in D \\
|f(x)| \leq M_{f} \text { and }|g(x)| \leq M_{g} \text { for all } x \in D
\end{gathered}
$$

Now let $\epsilon>0$. Pick n_{1}^{*} such that $n \geq n^{*}$ implies that $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2 M_{q}}$, and pick n_{2}^{*} such that $n \geq n^{*}$ implies that $\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2 K_{f}}$, both holding true for all $x \in D$. Then for all $x \in D$ we have that

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & =\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)+f_{n}(x) g(x)-f(x) g(x)\right| \\
& \leq\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right|+\left|f_{n}(x) g(x)-f(x) g(x)\right| \\
& \leq\left|f_{n}(x)\right| \cdot\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right| \cdot|g(x)| \\
& \leq K_{f} \cdot\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right| \cdot M_{g} \\
& <K_{f} \cdot \frac{\epsilon}{2 K_{f}}+\frac{\epsilon}{2 M_{g}} \cdot M_{g} \\
& =\epsilon
\end{aligned}
$$

