
MATH 413 – Real Analysis I – Fall 2020 – HW 09

SOLUTIONS

1. Section 8.1, Exercise 1, part (d).

Solution:

fn(x) = 1
ne

−n2x2 on [0,∞)

The pointwise limit is f(x) = 0 for all x. Notice that 0 < e−n
2x2 ≤ 1 for all x ∈ [0,∞)

and all n ∈ N. Thus we have 0 < fn(x) ≤ 1
n .

In fact this sequence also converges uniformly.

2. Section 8.1, Exercise 3.

Solution:

Suppose that fn, gn : D → R and converge pointwise to f and g respectively. Prove that
fn ± gn converges pointwise to f ± g.

Let ε > 0 and let x0 ∈ D be an arbitrary point in the domain. Choose n∗1 so that n ≥ n∗1
implies |fn(x0) − f(x0)| < ε

2 . We know we can do this at each x0 since we assume
pointwise convergence. Also choose n∗2 so that n ≥ n∗2 implies |gn(x0)− g(x0)| < ε

2 . Then∣∣(fn(x0) + gn(x0))− (f(x0) + g(x0))
∣∣ ≤ |fn(x0)− f(x0)|+ |gn(x0)− g(x0)| < ε

2 + ε
2 . Thus

fn + gn converges pointwise to f + g at x0.

The proof for fn − gn is nearly identical.

3. Prove that fn(x) = xn

n converges uniformly to f(x) = 0 on [0, 1].

Solution:

Let ε > 0 and choose n∗ > 1
ε . Then for any x ∈ [0, 1] and any n ≥ n∗ we have

|fn(x)− 0| = xn

n ≤
1
n ≤

1
n∗ < ε. Thus fn converges uniformly to f(x) = 0 on [0, 1].

It is important to realize that the convergence is uniform since the argument does not
depend on having fixed x to be any particular value. It works well in this case since x is
bounded. Of course uniform convergence does not depend in general on x being bounded.
Convergence can be uniform on unbounded domains as well.
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4. Section 8.2, Exercise 5.

Solution:

If fn and gn are sequences of bounded functions that converge uniformly on D to functions
f and g, respectively, prove that the sequence fngn converges uniformly to fg on D.

We will use the following results:

Definition 8.1.13. A sequence fn is uniformly bounded on D if and only if there exists a real
constant K such that |fn(x)| ≤ K for all x ∈ D and n ∈ N.

Section 8.2, Exercise 3. If fn is a sequence of bounded functions that converges uniformly to
f on D, prove that

(a) f is bounded. (Note that this need not be true if convergence is not uniform.
See Exercise 2(d) of Section 8.1.)

(b) fn is uniformly bounded.

Proof of Section 8.2, Exercise 3(a).

Let ε = 1. Then we know there is an n∗ such that n ≥ n∗ implies |fn(x)− f(x)| < 1 regard-
less of x ∈ D. In particular |fn∗(x) − f(x)| < 1 which implies in turn by rearranging that
fn∗(x) − 1 < f(x) < fn∗(x) + 1 for all x ∈ D. Since we know that each fn is bounded, then
for n∗ we know there is an M > 0 such that −M ≤ fn∗(x) ≤M for all x ∈ D. This gives us
that −M − 1 < f(x) < M + 1 i.e. that f is bounded by M + 1.

Note that we only know that each fn is bounded. We do not know that there is a ”global
constant” that bounds all fn simultaneously yet. That is what the next part is for.

Proof of Section 8.2, Exercise 3(b).

By the above, we have that f is bounded by M +1 and that |fn(x)−f(x)| < 1 for all n ≥ n∗.
Rearranging this gives us that f(x) − 1 < fn(x) < f(x) + 1 for all n ≥ n∗. Putting in the
bound on f gives −M − 1− 1 ≤ f(x)− 1 < fn(x) < f(x) + 1 ≤M + 1 + 1 for all n ≥ n∗, i.e.
that |fn(x)| ≤M + 2 for all n ≥ n∗.

Then let Mk be the bound for fk, for k = 1, 2, . . . , n∗ − 1. Since it was assumed that the
seuqence fn is bounded, we know that each function in the sequence has a bound, thus we
can define all of these Mk’s. Now take K = max{M1,M2, . . . ,Mn∗−1,M + 2}. We have that
K is a bound for all fn, i.e. that |fn(x)| ≤ K for all n ∈ N and x ∈ D. Thus K is a uniform
bound and the sequence fn is uniformly bounded.

Proof of Section 8.2, Exercise 5. Now on to the actual homework problem!

Since fn and gn are bounded sequences and converge uniformly to f and g, respectively, then
we know that fn and gn are uniformly bounded and that f and g are bounded (by the above
results just presented). Let Kf and Kg be the uniform bounds for fn and gn and Mf and Mg

be the bounds for f and g, i.e. that

|fn(x)| ≤ Kf and |gn(x)| ≤ Kg for all n ∈ N and x ∈ D

|f(x)| ≤Mf and |g(x)| ≤Mg for all x ∈ D
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Now let ε > 0. Pick n∗1 such that n ≥ n∗ implies that |fn(x)− f(x)| < ε
2Mg

, and pick n∗2 such

that n ≥ n∗ implies that |gn(x)− g(x)| < ε
2Kf

, both holding true for all x ∈ D. Then for all

x ∈ D we have that

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− fn(x)g(x) + fn(x)g(x)− f(x)g(x)|
≤ |fn(x)gn(x)− fn(x)g(x)|+ |fn(x)g(x)− f(x)g(x)|
≤ |fn(x)| · |gn(x)− g(x)|+ |fn(x)− f(x)| · |g(x)|
≤ Kf · |gn(x)− g(x)|+ |fn(x)− f(x)| ·Mg

< Kf ·
ε

2Kf
+

ε

2Mg
·Mg

= ε
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