The cohomology of $C_2$-equivariant Grassmannians

A database of known values of $H^{\ast,\ast}(\text{Gr}_k(\mathbb{R}^{p,q});\underline{\mathbb F}_2)$, expressed as a module over $\mathbb{M}_2:=H^{\ast,\ast}(pt;\underline{\mathbb F}_2)$. All $RO(C_2)$-grading is motivic, with bidegree $(x,y)$ indicating a $x$-dimensional representation containing $y$ copies of the sign representation (and hence $x-y$ copies of the trivial rep.)

Note that $\text{Gr}_k(\mathbb{R}^{p,p-q})\cong \text{Gr}_k(\mathbb{R}^{p,q})$ and $\text{Gr}_{p-k}(\mathbb{R}^{p,q})\cong \text{Gr}_k(\mathbb{R}^{p,q})$ so we'll just worry about when $k,q\le \frac p2$.

When $k=1$

These are the projective spaces $\mathbb{P}(\text{Gr}_k\mathbb{R}^{p,q})$ whose cohomologies were calculated by Kronholm, who defines "twisted" projective space $\mathbb{RP}^n_{tw}=\mathbb{P}(\mathbb{R}^{n+1,\lceil\frac n2\rceil})$ and gives $$H^{\ast,\ast}(\mathbb{RP}^n_{tw})=\bigoplus_{k=0}^n\Sigma^{k,\lceil\frac k2\rceil}\mathbb M_2$$.
$k=1$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=2$ $\mathbb{RP}^1_{tw}$
$p=3$ $\mathbb{RP}^2_{tw}$
$p=4$ $\mathbb{P}(\mathbb{R}^{4,1})$ $\mathbb{RP}^3_{tw}$
$p=5$ $\mathbb{P}(\mathbb{R}^{5,1})$ $\mathbb{RP}^4_{tw}$
$p=6$ $\mathbb{P}(\mathbb{R}^{6,1})$ $\mathbb{P}(\mathbb{R}^{6,2})$ $\mathbb{RP}^5_{tw}$
$p=7$ $\mathbb{P}(\mathbb{R}^{7,1})$ $\mathbb{P}(\mathbb{R}^{7,2})$ $\mathbb{RP}^6_{tw}$
$p=8$ $\mathbb{P}(\mathbb{R}^{8,1})$ $\mathbb{P}(\mathbb{R}^{8,2})$ $\mathbb{P}(\mathbb{R}^{8,3})$ $\mathbb{RP}^7_{tw}$
$p=9$ $\mathbb{P}(\mathbb{R}^{9,1})$ $\mathbb{P}(\mathbb{R}^{9,2})$ $\mathbb{P}(\mathbb{R}^{9,3})$ $\mathbb{RP}^8_{tw}$
$p=10$ $\mathbb{P}(\mathbb{R}^{10,1})$ $\mathbb{P}(\mathbb{R}^{10,2})$ $\mathbb{P}(\mathbb{R}^{10,3})$ $\mathbb{P}(\mathbb{R}^{10,4})$ $\mathbb{RP}^9_{tw}$
$p=11$ $\mathbb{P}(\mathbb{R}^{11,1})$ $\mathbb{P}(\mathbb{R}^{11,2})$ $\mathbb{P}(\mathbb{R}^{11,3})$ $\mathbb{P}(\mathbb{R}^{11,4})$ $\mathbb{RP}^{10}_{tw}$
$p=12$ $\mathbb{P}(\mathbb{R}^{12,1})$ $\mathbb{P}(\mathbb{R}^{12,2})$ $\mathbb{P}(\mathbb{R}^{12,3})$ $\mathbb{P}(\mathbb{R}^{12,4})$ $\mathbb{P}(\mathbb{R}^{12,5})$ $\mathbb{RP}^{11}_{tw}$
$p=13$ $\mathbb{P}(\mathbb{R}^{13,1})$ $\mathbb{P}(\mathbb{R}^{13,2})$ $\mathbb{P}(\mathbb{R}^{13,3})$ $\mathbb{P}(\mathbb{R}^{13,4})$ $\mathbb{P}(\mathbb{R}^{13,5})$ $\mathbb{RP}^{12}_{tw}$

When $k=2$

$k=2$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=4$ $\text{Gr}_2(\mathbb{R}^{4,1})$ $\text{Gr}_2(\mathbb{R}^{4,2})$
$p=5$ $\text{Gr}_2(\mathbb{R}^{5,1})$ $\text{Gr}_2(\mathbb{R}^{5,2})$
$p=6$ $\text{Gr}_2(\mathbb{R}^{6,1})$ $\text{Gr}_2(\mathbb{R}^{6,2})$ $\text{Gr}_2(\mathbb{R}^{6,3})$
$p=7$ $\text{Gr}_2(\mathbb{R}^{7,1})$ $\text{Gr}_2(\mathbb{R}^{7,2})$ $\text{Gr}_2(\mathbb{R}^{7,3})$
$p=8$ $\text{Gr}_2(\mathbb{R}^{8,1})$ 2 possible $\text{Gr}_2(\mathbb{R}^{8,3})$ $\text{Gr}_2(\mathbb{R}^{8,4})$
$p=9$ $\text{Gr}_2(\mathbb{R}^{9,1})$ 4 possible 2 possible $\text{Gr}_2(\mathbb{R}^{9,4})$
$p=10$ $\text{Gr}_2(\mathbb{R}^{10,1})$ 8 possible 8 possible 2 possible $\text{Gr}_2(\mathbb{R}^{10,5})$
$p=11$ $\text{Gr}_2(\mathbb{R}^{11,1})$ 24 possible 48 possible 8 possible $\text{Gr}_2(\mathbb{R}^{11,5})$
$p=12$ $\text{Gr}_2(\mathbb{R}^{12,1})$ 72 possible 288 possible 96 possible 4 possible $\text{Gr}_2(\mathbb{R}^{12,6})$

When $k=3$

$k=3$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=6$ $\text{Gr}_3(\mathbb{R}^{6,1})$ $\text{Gr}_3(\mathbb{R}^{6,2})$ $\text{Gr}_3(\mathbb{R}^{6,3})$
$p=7$ $\text{Gr}_3(\mathbb{R}^{7,1})$ 2 possible 14 possible
$p=8$ $\text{Gr}_3(\mathbb{R}^{8,1})$ 4 possible 168 possible ?
$p=9$ 2 possible ? ? ?
$p=10$ 4 possible ? ? ? ?
$p=11$ 8 possible ? ? ? ?
$p=12$ 24 possible ? ? ? ? ?

When $k=4$

$k=4$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=8$ $\text{Gr}_4(\mathbb{R}^{8,1})$ 6 possible ? ?
$p=9$ 2 possible ? ? ?
$p=10$ 16 possible ? ? ? ?
$p=11$ 288 possible. ? ? ? ?

When $k=5$

$k=5$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=10$ 16 possible ? ? ? ?
$p=11$ 864 possible ? ? ? ?