The cohomology of $C_2$-equivariant Grassmannians $\text{Gr}_k(\mathbb{R}^{p,q})$ when $k=3$

$k=3$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=6$ $\text{Gr}_3(\mathbb{R}^{6,1})$ $\text{Gr}_3(\mathbb{R}^{6,2})$ $\text{Gr}_3(\mathbb{R}^{6,3})$
$p=7$ $\text{Gr}_3(\mathbb{R}^{7,1})$ 2 possible 14 possible
$p=8$ $\text{Gr}_3(\mathbb{R}^{8,1})$ 4 possible 168 possible ?
$p=9$ 2 possible ? ? ?
$p=10$ 4 possible ? ? ? ?
$p=11$ 8 possible ? ? ? ?
$p=12$ 24 possible ? ? ? ? ?

The cohomology of $\text{Gr}_3(\mathbb{R}^{6,1})$

Poincaré polynomial: $$x^{9} y^{3} + x^{8} y^{2} + 2 x^{7} y^{2} + 3 x^{6} y^{2} + 2 x^{5} y^{2} + x^{5} y + x^{4} y^{2} + 2 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Generator count grid:
1 1 2 2 3 3 3 2 2 1 1 2 2 3 3 3 2 2 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_3(\mathbb{R}^{6,1}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{3,1}\mathbb{M}_2\oplus\Sigma^{4,1}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{5,1}\mathbb{M}_2\oplus\Sigma^{5,2}\mathbb{M}_2\oplus\Sigma^{6,2}\mathbb{M}_2\oplus\Sigma^{7,2}\mathbb{M}_2\oplus\Sigma^{8,2}\mathbb{M}_2\oplus\Sigma^{9,3}\mathbb{M}_2.$$




The cohomology of $\text{Gr}_3(\mathbb{R}^{6,2})$

Poincaré polynomial: $$x^{9} y^{4} + x^{8} y^{4} + x^{7} y^{4} + x^{7} y^{3} + 3 x^{6} y^{3} + 2 x^{5} y^{3} + x^{5} y^{2} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ Generator count grid:
1 1 1 1 3 3 3 2 2 1 3 3 3 3 3 3 1 1 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_3(\mathbb{R}^{6,2}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{2,2}\mathbb{M}_2\oplus\Sigma^{3,2}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{5,2}\mathbb{M}_2\oplus\Sigma^{5,3}\mathbb{M}_2\oplus\Sigma^{6,3}\mathbb{M}_2\oplus\Sigma^{7,3}\mathbb{M}_2\oplus\Sigma^{7,4}\mathbb{M}_2\oplus\Sigma^{8,4}\mathbb{M}_2\oplus\Sigma^{9,4}\mathbb{M}_2.$$




The cohomology of $\text{Gr}_3(\mathbb{R}^{6,3})$

For details of this computation, see Section 6 of this paper .

Poincare polynomial: $$x^{9} y^{5} + x^{8} y^{4} + 2 x^{7} y^{4} + x^{6} y^{4} + 2 x^{6} y^{3} + 3 x^{5} y^{3} + x^{4} y^{3} + 2 x^{4} y^{2} + x^{3} y^{3} + 2 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ Generator count grid:
1 1 2 2 1 2 2 3 3 3 1 2 2 1 2 2 1 1 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_3(\mathbb{R}^{6,3}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{2,2}\mathbb{M}_2\oplus\Sigma^{3,2}\mathbb{M}_2\oplus\Sigma^{3,3}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{4,3}\mathbb{M}_2\oplus\Sigma^{5,3}\mathbb{M}_2\oplus\Sigma^{6,3}\mathbb{M}_2\oplus\Sigma^{6,4}\mathbb{M}_2\oplus\Sigma^{7,4}\mathbb{M}_2\oplus\Sigma^{8,4}\mathbb{M}_2\oplus\Sigma^{9,5}\mathbb{M}_2.$$




The cohomology of $\text{Gr}_3(\mathbb{R}^{7,1})$

Poincaré polynomial: $$x^{12} y^{3} + x^{11} y^{3} + x^{10} y^{3} + x^{10} y^{2} + x^{9} y^{3} + 2 x^{9} y^{2} + 4 x^{8} y^{2} + 4 x^{7} y^{2} + 4 x^{6} y^{2} + x^{6} y + 2 x^{5} y^{2} + 2 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Generator count grid:
1 1 1 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 1 2 2 2 2 1 3 3 3 3 3 3 2 2 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_3(\mathbb{R}^{7,1}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{3,1}\mathbb{M}_2\oplus\Sigma^{4,1}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{5,1}\mathbb{M}_2\oplus\Sigma^{5,2}\mathbb{M}_2\oplus\Sigma^{6,1}\mathbb{M}_2\oplus\Sigma^{6,2}\mathbb{M}_2\oplus\Sigma^{7,2}\mathbb{M}_2\oplus\Sigma^{8,2}\mathbb{M}_2\oplus\Sigma^{9,2}\mathbb{M}_2\oplus\Sigma^{9,3}\mathbb{M}_2\oplus\Sigma^{10,2}\mathbb{M}_2\oplus\Sigma^{10,3}\mathbb{M}_2\oplus\Sigma^{11,3}\mathbb{M}_2\oplus\Sigma^{12,3}\mathbb{M}_2.$$




The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{7,2})$.

There are 2 possibilities.
Here are their Poincaré polynomials: $$x^{12} y^{5} + x^{11} y^{5} + 2 x^{10} y^{4} + 3 x^{9} y^{4} + 3 x^{8} y^{4} + x^{8} y^{3} + x^{7} y^{4} + 3 x^{7} y^{3} + 4 x^{6} y^{3} + x^{6} y^{2} + 2 x^{5} y^{3} + 2 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{5} + x^{11} y^{5} + 2 x^{10} y^{4} + 3 x^{9} y^{4} + 3 x^{8} y^{4} + x^{8} y^{3} + 4 x^{7} y^{3} + 5 x^{6} y^{3} + 2 x^{5} y^{3} + 2 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 2 possibilities:
1 1 2 2 3 3 3 3 3 3 1 1 3 3 3 4 4 4 4 1 2 2 2 2 4 4 4 4 3 3 3 1 1 1 1
1 1 2 2 3 3 3 3 3 3 1 4 4 4 4 5 5 5 5 5 2 2 2 2 4 4 4 4 3 3 3 1 1 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{7,3})$.

There are 14 possibilities.
Here are their Poincaré polynomials: $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + x^{5} y^{5} + 4 x^{6} y^{3} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + x^{5} y^{5} + 3 x^{6} y^{3} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{4} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{4} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + 4 x^{5} y^{3} + x^{4} y^{4} + x^{4} y^{3} + 2 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + 4 x^{5} y^{3} + x^{4} y^{4} + x^{4} y^{3} + 2 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + x^{3} y^{3} + 2 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + x^{3} y^{3} + 2 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + 4 x^{5} y^{3} + 2 x^{4} y^{3} + 2 x^{4} y^{2} + x^{3} y^{3} + 2 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + 4 x^{5} y^{3} + 2 x^{4} y^{3} + 2 x^{4} y^{2} + x^{3} y^{3} + 2 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + 2 x^{2} y^{2} + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + x^{5} y^{4} + 3 x^{5} y^{3} + x^{4} y^{3} + 3 x^{4} y^{2} + 3 x^{3} y^{2} + 2 x^{2} y^{2} + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + x^{7} y^{5} + 3 x^{7} y^{4} + x^{6} y^{4} + 4 x^{6} y^{3} + 4 x^{5} y^{3} + 2 x^{4} y^{3} + 2 x^{4} y^{2} + 3 x^{3} y^{2} + 2 x^{2} y^{2} + x y + 1$$ $$x^{12} y^{6} + x^{11} y^{6} + 2 x^{10} y^{5} + 3 x^{9} y^{5} + x^{8} y^{5} + 3 x^{8} y^{4} + 4 x^{7} y^{4} + 2 x^{6} y^{4} + 3 x^{6} y^{3} + 4 x^{5} y^{3} + 2 x^{4} y^{3} + 2 x^{4} y^{2} + 3 x^{3} y^{2} + 2 x^{2} y^{2} + x y + 1$$ Here are the corresponding generator grids to these 14 possibilities:
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 1 4 4 4 4 3 3 3 1 3 3 3 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 1 3 3 3 3 3 3 1 3 3 3 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 1 3 3 3 1 3 3 3 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 1 3 3 3 1 3 3 3 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 4 4 4 4 1 1 2 2 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 4 4 4 4 1 1 2 2 3 3 3 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 1 3 3 3 1 3 3 3 1 2 2 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 1 3 3 3 1 3 3 3 1 2 2 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 4 4 4 4 2 2 2 2 1 2 2 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 4 4 4 4 2 2 2 2 1 2 2 1 1 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 1 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 1 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 1 3 3 3 1 3 3 3 1 4 4 4 4 4 4 4 4 2 2 2 2 3 3 3 2 2 1 1
1 1 2 2 3 3 3 1 3 3 3 4 4 4 4 2 2 3 3 3 4 4 4 4 2 2 2 2 3 3 3 2 2 1 1





The cohomology of $\text{Gr}_3(\mathbb{R}^{8,1})$

Poincaré polynomial: $$x^{15} y^{3} + x^{14} y^{3} + 2 x^{13} y^{3} + 2 x^{12} y^{3} + x^{12} y^{2} + 2 x^{11} y^{3} + 2 x^{11} y^{2} + x^{10} y^{3} + 4 x^{10} y^{2} + x^{9} y^{3} + 5 x^{9} y^{2} + 6 x^{8} y^{2} + 5 x^{7} y^{2} + x^{7} y + 4 x^{6} y^{2} + 2 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Generator count grid:
1 1 2 2 2 2 1 2 2 2 2 1 4 4 4 4 1 5 5 5 5 5 6 6 6 6 6 6 5 5 5 5 5 1 4 4 4 4 2 2 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_3(\mathbb{R}^{8,1}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{3,1}\mathbb{M}_2\oplus\Sigma^{4,1}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{5,1}\mathbb{M}_2\oplus\Sigma^{5,2}\mathbb{M}_2\oplus\Sigma^{6,1}\mathbb{M}_2\oplus\Sigma^{6,2}\mathbb{M}_2\oplus\Sigma^{7,1}\mathbb{M}_2\oplus\Sigma^{7,2}\mathbb{M}_2\oplus\Sigma^{8,2}\mathbb{M}_2\oplus\Sigma^{9,2}\mathbb{M}_2\oplus\Sigma^{9,3}\mathbb{M}_2\oplus\Sigma^{10,2}\mathbb{M}_2\oplus\Sigma^{10,3}\mathbb{M}_2\oplus\Sigma^{11,2}\mathbb{M}_2\oplus\Sigma^{11,3}\mathbb{M}_2\oplus\Sigma^{12,2}\mathbb{M}_2\oplus\Sigma^{12,3}\mathbb{M}_2\oplus\Sigma^{13,3}\mathbb{M}_2\oplus\Sigma^{14,3}\mathbb{M}_2\oplus\Sigma^{15,3}\mathbb{M}_2.$$




The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{8,2})$.

There are 4 possibilities.
Here are their Poincaré polynomials: $$x^{15} y^{6} + x^{14} y^{5} + 2 x^{13} y^{5} + 2 x^{12} y^{5} + x^{12} y^{4} + x^{11} y^{5} + 3 x^{11} y^{4} + 5 x^{10} y^{4} + 5 x^{9} y^{4} + x^{9} y^{3} + 3 x^{8} y^{4} + 3 x^{8} y^{3} + x^{7} y^{4} + 4 x^{7} y^{3} + x^{7} y^{2} + 4 x^{6} y^{3} + 2 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{15} y^{6} + x^{14} y^{5} + 2 x^{13} y^{5} + 2 x^{12} y^{5} + x^{12} y^{4} + x^{11} y^{5} + 3 x^{11} y^{4} + 5 x^{10} y^{4} + 5 x^{9} y^{4} + x^{9} y^{3} + 2 x^{8} y^{4} + 4 x^{8} y^{3} + x^{7} y^{4} + 5 x^{7} y^{3} + 4 x^{6} y^{3} + 2 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{15} y^{6} + x^{14} y^{5} + 2 x^{13} y^{5} + 2 x^{12} y^{5} + x^{12} y^{4} + x^{11} y^{5} + 3 x^{11} y^{4} + 5 x^{10} y^{4} + 5 x^{9} y^{4} + x^{9} y^{3} + 3 x^{8} y^{4} + 3 x^{8} y^{3} + 5 x^{7} y^{3} + x^{7} y^{2} + 5 x^{6} y^{3} + x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{15} y^{6} + x^{14} y^{5} + 2 x^{13} y^{5} + 2 x^{12} y^{5} + x^{12} y^{4} + x^{11} y^{5} + 3 x^{11} y^{4} + 5 x^{10} y^{4} + 5 x^{9} y^{4} + x^{9} y^{3} + 2 x^{8} y^{4} + 4 x^{8} y^{3} + 6 x^{7} y^{3} + 5 x^{6} y^{3} + x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 4 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 4 possibilities:
1 1 2 2 2 2 1 1 3 3 3 5 5 5 5 5 5 5 5 5 5 1 3 3 3 3 3 3 1 4 4 4 4 1 4 4 4 4 2 2 2 2 3 3 3 4 4 4 4 3 3 3 1 1 1 1
1 1 2 2 2 2 1 1 3 3 3 5 5 5 5 5 5 5 5 5 5 1 2 2 4 4 4 4 1 5 5 5 5 5 4 4 4 4 2 2 2 2 3 3 3 4 4 4 4 3 3 3 1 1 1 1
1 1 2 2 2 2 1 1 3 3 3 5 5 5 5 5 5 5 5 5 5 1 3 3 3 3 3 3 5 5 5 5 5 1 5 5 5 5 5 1 2 2 3 3 3 4 4 4 4 3 3 3 1 1 1 1
1 1 2 2 2 2 1 1 3 3 3 5 5 5 5 5 5 5 5 5 5 1 2 2 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 1 2 2 3 3 3 4 4 4 4 3 3 3 1 1 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{9,1})$.

There are 2 possibilities.
Here are their Poincaré polynomials: $$x^{18} y^{3} + x^{17} y^{3} + 2 x^{16} y^{3} + 3 x^{15} y^{3} + 3 x^{14} y^{3} + x^{14} y^{2} + 3 x^{13} y^{3} + 2 x^{13} y^{2} + 3 x^{12} y^{3} + 4 x^{12} y^{2} + 2 x^{11} y^{3} + 5 x^{11} y^{2} + x^{10} y^{3} + 7 x^{10} y^{2} + x^{9} y^{3} + 7 x^{9} y^{2} + 7 x^{8} y^{2} + x^{8} y + 5 x^{7} y^{2} + 2 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{18} y^{3} + x^{17} y^{3} + 2 x^{16} y^{3} + 3 x^{15} y^{3} + 3 x^{14} y^{3} + x^{14} y^{2} + 3 x^{13} y^{3} + 2 x^{13} y^{2} + 3 x^{12} y^{3} + 4 x^{12} y^{2} + 2 x^{11} y^{3} + 5 x^{11} y^{2} + x^{10} y^{3} + 7 x^{10} y^{2} + 8 x^{9} y^{2} + 8 x^{8} y^{2} + 5 x^{7} y^{2} + 2 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 2 possibilities:
1 1 2 2 3 3 3 3 3 3 1 3 3 3 2 2 3 3 3 4 4 4 4 2 2 5 5 5 5 5 1 7 7 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 5 5 5 5 5 2 2 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 3 3 3 1 3 3 3 2 2 3 3 3 4 4 4 4 2 2 5 5 5 5 5 1 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5 5 5 5 5 2 2 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{10,1})$.

There are 4 possibilities.
Here are their Poincaré polynomials: $$x^{21} y^{3} + x^{20} y^{3} + 2 x^{19} y^{3} + 3 x^{18} y^{3} + 4 x^{17} y^{3} + 4 x^{16} y^{3} + x^{16} y^{2} + 5 x^{15} y^{3} + 2 x^{15} y^{2} + 4 x^{14} y^{3} + 4 x^{14} y^{2} + 4 x^{13} y^{3} + 5 x^{13} y^{2} + 3 x^{12} y^{3} + 7 x^{12} y^{2} + 2 x^{11} y^{3} + 8 x^{11} y^{2} + x^{10} y^{3} + 9 x^{10} y^{2} + x^{9} y^{3} + 8 x^{9} y^{2} + x^{9} y + 7 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{21} y^{3} + x^{20} y^{3} + 2 x^{19} y^{3} + 3 x^{18} y^{3} + 4 x^{17} y^{3} + 4 x^{16} y^{3} + x^{16} y^{2} + 5 x^{15} y^{3} + 2 x^{15} y^{2} + 4 x^{14} y^{3} + 4 x^{14} y^{2} + 4 x^{13} y^{3} + 5 x^{13} y^{2} + 3 x^{12} y^{3} + 7 x^{12} y^{2} + 2 x^{11} y^{3} + 8 x^{11} y^{2} + 10 x^{10} y^{2} + x^{9} y^{3} + 9 x^{9} y^{2} + 7 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{21} y^{3} + x^{20} y^{3} + 2 x^{19} y^{3} + 3 x^{18} y^{3} + 4 x^{17} y^{3} + 4 x^{16} y^{3} + x^{16} y^{2} + 5 x^{15} y^{3} + 2 x^{15} y^{2} + 4 x^{14} y^{3} + 4 x^{14} y^{2} + 4 x^{13} y^{3} + 5 x^{13} y^{2} + 3 x^{12} y^{3} + 7 x^{12} y^{2} + 2 x^{11} y^{3} + 8 x^{11} y^{2} + x^{10} y^{3} + 9 x^{10} y^{2} + 9 x^{9} y^{2} + x^{9} y + 8 x^{8} y^{2} + x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{21} y^{3} + x^{20} y^{3} + 2 x^{19} y^{3} + 3 x^{18} y^{3} + 4 x^{17} y^{3} + 4 x^{16} y^{3} + x^{16} y^{2} + 5 x^{15} y^{3} + 2 x^{15} y^{2} + 4 x^{14} y^{3} + 4 x^{14} y^{2} + 4 x^{13} y^{3} + 5 x^{13} y^{2} + 3 x^{12} y^{3} + 7 x^{12} y^{2} + 2 x^{11} y^{3} + 8 x^{11} y^{2} + 10 x^{10} y^{2} + 10 x^{9} y^{2} + 8 x^{8} y^{2} + x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 4 possibilities:
1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 1 5 5 5 5 5 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 3 3 3 7 7 7 7 7 7 7 2 2 8 8 8 8 8 8 8 8 1 9 9 9 9 9 9 9 9 9 1 8 8 8 8 8 8 8 8 1 7 7 7 7 7 7 7 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 1 5 5 5 5 5 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 3 3 3 7 7 7 7 7 7 7 2 2 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 1 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 1 5 5 5 5 5 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 3 3 3 7 7 7 7 7 7 7 2 2 8 8 8 8 8 8 8 8 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 8 8 8 8 8 8 8 8 1 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 1 5 5 5 5 5 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 3 3 3 7 7 7 7 7 7 7 2 2 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 8 1 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{11,1})$.

There are 8 possibilities.
Here are their Poincaré polynomials: $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + 2 x^{11} y^{3} + 10 x^{11} y^{2} + x^{10} y^{3} + 10 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 8 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + x^{11} y^{3} + 11 x^{11} y^{2} + x^{10} y^{3} + 11 x^{10} y^{2} + x^{9} y^{3} + 8 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + 2 x^{11} y^{3} + 10 x^{11} y^{2} + 11 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 9 x^{9} y^{2} + x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + x^{11} y^{3} + 11 x^{11} y^{2} + 12 x^{10} y^{2} + x^{9} y^{3} + 9 x^{9} y^{2} + x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + 2 x^{11} y^{3} + 10 x^{11} y^{2} + x^{10} y^{3} + 10 x^{10} y^{2} + x^{10} y + 9 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + x^{11} y^{3} + 11 x^{11} y^{2} + x^{10} y^{3} + 11 x^{10} y^{2} + 9 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + 2 x^{11} y^{3} + 10 x^{11} y^{2} + 11 x^{10} y^{2} + x^{10} y + 10 x^{9} y^{2} + x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{3} + x^{23} y^{3} + 2 x^{22} y^{3} + 3 x^{21} y^{3} + 4 x^{20} y^{3} + 5 x^{19} y^{3} + 6 x^{18} y^{3} + x^{18} y^{2} + 6 x^{17} y^{3} + 2 x^{17} y^{2} + 6 x^{16} y^{3} + 4 x^{16} y^{2} + 6 x^{15} y^{3} + 5 x^{15} y^{2} + 5 x^{14} y^{3} + 7 x^{14} y^{2} + 4 x^{13} y^{3} + 8 x^{13} y^{2} + 3 x^{12} y^{3} + 10 x^{12} y^{2} + x^{11} y^{3} + 11 x^{11} y^{2} + 12 x^{10} y^{2} + 10 x^{9} y^{2} + x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 8 possibilities:
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 2 2 10 10 10 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 1 1 8 8 8 8 8 8 8 8 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 1 11 11 11 11 11 11 11 11 11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 1 8 8 8 8 8 8 8 8 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 2 2 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 1 1 9 9 9 9 9 9 9 9 9 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 1 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 1 9 9 9 9 9 9 9 9 9 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 2 2 10 10 10 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 1 9 9 9 9 9 9 9 9 9 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 1 11 11 11 11 11 11 11 11 11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 9 9 9 9 9 9 9 9 9 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 2 2 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 1 10 10 10 10 10 10 10 10 10 10 1 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 1 6 6 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 4 4 4 4 8 8 8 8 8 8 8 8 3 3 3 10 10 10 10 10 10 10 10 10 10 1 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 1 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_3(\mathbb{R}^{12,1})$.

There are 24 possibilities.
Here are their Poincaré polynomials: $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 2 x^{11} y^{3} + 11 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 10 x^{10} y^{2} + x^{9} y^{3} + 2 x^{10} y + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 2 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 10 x^{10} y^{2} + x^{9} y^{3} + 2 x^{10} y + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 11 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + x^{11} y^{3} + 13 x^{11} y^{2} + x^{10} y^{3} + 11 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 13 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 12 x^{10} y^{2} + x^{9} y^{3} + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 14 x^{11} y^{2} + x^{10} y^{3} + 12 x^{10} y^{2} + x^{9} y^{3} + 8 x^{9} y^{2} + 3 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 2 x^{11} y^{3} + 11 x^{11} y^{2} + x^{11} y + 11 x^{10} y^{2} + x^{9} y^{3} + 2 x^{10} y + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 2 x^{11} y^{3} + 12 x^{11} y^{2} + 11 x^{10} y^{2} + x^{9} y^{3} + 2 x^{10} y + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + x^{11} y^{3} + 12 x^{11} y^{2} + x^{11} y + 12 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + x^{11} y^{3} + 13 x^{11} y^{2} + 12 x^{10} y^{2} + x^{9} y^{3} + x^{10} y + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 13 x^{11} y^{2} + x^{11} y + 13 x^{10} y^{2} + x^{9} y^{3} + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 14 x^{11} y^{2} + 13 x^{10} y^{2} + x^{9} y^{3} + 9 x^{9} y^{2} + 2 x^{9} y + 7 x^{8} y^{2} + 3 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 2 x^{11} y^{3} + 11 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 10 x^{10} y^{2} + 2 x^{10} y + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 2 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 10 x^{10} y^{2} + 2 x^{10} y + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 11 x^{10} y^{2} + x^{10} y + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + x^{11} y^{3} + 13 x^{11} y^{2} + x^{10} y^{3} + 11 x^{10} y^{2} + x^{10} y + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 13 x^{11} y^{2} + x^{10} y^{3} + x^{11} y + 12 x^{10} y^{2} + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 14 x^{11} y^{2} + x^{10} y^{3} + 12 x^{10} y^{2} + 9 x^{9} y^{2} + 3 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 2 x^{11} y^{3} + 11 x^{11} y^{2} + x^{11} y + 11 x^{10} y^{2} + 2 x^{10} y + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 2 x^{11} y^{3} + 12 x^{11} y^{2} + 11 x^{10} y^{2} + 2 x^{10} y + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + x^{11} y^{3} + 12 x^{11} y^{2} + x^{11} y + 12 x^{10} y^{2} + x^{10} y + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + x^{11} y^{3} + 13 x^{11} y^{2} + 12 x^{10} y^{2} + x^{10} y + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 3 x^{12} y^{3} + 12 x^{12} y^{2} + 13 x^{11} y^{2} + x^{11} y + 13 x^{10} y^{2} + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{27} y^{3} + x^{26} y^{3} + 2 x^{25} y^{3} + 3 x^{24} y^{3} + 4 x^{23} y^{3} + 5 x^{22} y^{3} + 7 x^{21} y^{3} + 7 x^{20} y^{3} + x^{20} y^{2} + 8 x^{19} y^{3} + 2 x^{19} y^{2} + 8 x^{18} y^{3} + 4 x^{18} y^{2} + 8 x^{17} y^{3} + 5 x^{17} y^{2} + 7 x^{16} y^{3} + 7 x^{16} y^{2} + 7 x^{15} y^{3} + 8 x^{15} y^{2} + 5 x^{14} y^{3} + 10 x^{14} y^{2} + 4 x^{13} y^{3} + 11 x^{13} y^{2} + 2 x^{12} y^{3} + 13 x^{12} y^{2} + 14 x^{11} y^{2} + 13 x^{10} y^{2} + 10 x^{9} y^{2} + 2 x^{9} y + 8 x^{8} y^{2} + 2 x^{8} y + 5 x^{7} y^{2} + 3 x^{7} y + 4 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 3 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 24 possibilities:
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 1 1 10 10 10 10 10 10 10 10 10 10 1 2 2 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 2 2 12 12 12 12 12 12 12 12 12 12 12 12 1 10 10 10 10 10 10 10 10 10 10 1 2 2 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 1 11 11 11 11 11 11 11 11 11 11 11 1 1 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 1 1 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 1 1 12 12 12 12 12 12 12 12 12 12 12 12 1 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 1 8 8 8 8 8 8 8 8 3 3 3 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 1 2 2 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 2 2 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 1 2 2 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 1 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 1 1 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 1 9 9 9 9 9 9 9 9 9 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 1 1 10 10 10 10 10 10 10 10 10 10 2 2 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 2 2 12 12 12 12 12 12 12 12 12 12 12 12 1 10 10 10 10 10 10 10 10 10 10 2 2 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 1 11 11 11 11 11 11 11 11 11 11 11 1 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 1 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 1 1 12 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 2 2 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 2 2 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 2 2 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 12 12 12 12 12 12 12 12 12 12 12 12 1 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 1 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 3 3 3 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 1 13 13 13 13 13 13 13 13 13 13 13 13 13 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1
1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 8 8 8 8 8 8 8 8 2 2 8 8 8 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 2 2 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 10 10 10 10 10 10 10 10 10 10 2 2 8 8 8 8 8 8 8 8 2 2 5 5 5 5 5 3 3 3 4 4 4 4 3 3 3 2 2 3 3 3 1 3 3 3 3 3 3 2 2 1 1