The cohomology of $C_2$-equivariant Grassmannians $\text{Gr}_k(\mathbb{R}^{p,q})$ when $k=4$

$k=4$ $q=1$ $q=2$ $q=3$ $q=4$ $q=5$ $q=6$
$p=8$ $\text{Gr}_4(\mathbb{R}^{8,1})$ 6 possible ? ?
$p=9$ 2 possible ? ? ?
$p=10$ 16 possible ? ? ? ?
$p=11$ 288 possible. ? ? ? ?

The cohomology of $\text{Gr}_4(\mathbb{R}^{8,1})$

Poincaré polynomial: $$x^{16} y^{4} + x^{15} y^{3} + 2 x^{14} y^{3} + 3 x^{13} y^{3} + 4 x^{12} y^{3} + x^{12} y^{2} + 3 x^{11} y^{3} + 2 x^{11} y^{2} + 2 x^{10} y^{3} + 5 x^{10} y^{2} + x^{9} y^{3} + 6 x^{9} y^{2} + 8 x^{8} y^{2} + 6 x^{7} y^{2} + x^{7} y + 5 x^{6} y^{2} + 2 x^{6} y + 2 x^{5} y^{2} + 3 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Generator count grid:
1 1 2 2 3 3 3 4 4 4 4 1 3 3 3 2 2 2 2 5 5 5 5 5 1 6 6 6 6 6 6 8 8 8 8 8 8 8 8 6 6 6 6 6 6 1 5 5 5 5 5 2 2 2 2 3 3 3 1 4 4 4 4 3 3 3 2 2 1 1
Explicitly, as a free module over the ground ring $\mathbb{M}_2$: $$H^{\ast,\ast}(\text{Gr}_4(\mathbb{R}^{8,1}))=\mathbb{M}_2\oplus\Sigma^{1,1}\mathbb{M}_2\oplus\Sigma^{2,1}\mathbb{M}_2\oplus\Sigma^{3,1}\mathbb{M}_2\oplus\Sigma^{4,1}\mathbb{M}_2\oplus\Sigma^{4,2}\mathbb{M}_2\oplus\Sigma^{5,1}\mathbb{M}_2\oplus\Sigma^{5,2}\mathbb{M}_2\oplus\Sigma^{6,1}\mathbb{M}_2\oplus\Sigma^{6,2}\mathbb{M}_2\oplus\Sigma^{7,1}\mathbb{M}_2\oplus\Sigma^{7,2}\mathbb{M}_2\oplus\Sigma^{8,2}\mathbb{M}_2\oplus\Sigma^{9,2}\mathbb{M}_2\oplus\Sigma^{9,3}\mathbb{M}_2\oplus\Sigma^{10,2}\mathbb{M}_2\oplus\Sigma^{10,3}\mathbb{M}_2\oplus\Sigma^{11,2}\mathbb{M}_2\oplus\Sigma^{11,3}\mathbb{M}_2\oplus\Sigma^{12,2}\mathbb{M}_2\oplus\Sigma^{12,3}\mathbb{M}_2\oplus\Sigma^{13,3}\mathbb{M}_2\oplus\Sigma^{14,3}\mathbb{M}_2\oplus\Sigma^{15,3}\mathbb{M}_2\oplus\Sigma^{16,4}\mathbb{M}_2.$$




The AutoKron can't determine the cohomology of $\text{Gr}_4(\mathbb{R}^{8,2})$.

There are 6 possibilities.
Here are their Poincaré polynomials: $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 5 x^{8} y^{4} + 3 x^{8} y^{3} + 2 x^{7} y^{4} + 4 x^{7} y^{3} + x^{7} y^{2} + 4 x^{6} y^{3} + 3 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 4 x^{8} y^{4} + 4 x^{8} y^{3} + 2 x^{7} y^{4} + 5 x^{7} y^{3} + 4 x^{6} y^{3} + 3 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 5 x^{8} y^{4} + 3 x^{8} y^{3} + x^{7} y^{4} + 5 x^{7} y^{3} + x^{7} y^{2} + 5 x^{6} y^{3} + 2 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 4 x^{8} y^{4} + 4 x^{8} y^{3} + x^{7} y^{4} + 6 x^{7} y^{3} + 5 x^{6} y^{3} + 2 x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 5 x^{8} y^{4} + 3 x^{8} y^{3} + 6 x^{7} y^{3} + x^{7} y^{2} + 6 x^{6} y^{3} + x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ $$x^{16} y^{6} + x^{15} y^{6} + x^{14} y^{6} + x^{14} y^{5} + 3 x^{13} y^{5} + 4 x^{12} y^{5} + x^{12} y^{4} + 2 x^{11} y^{5} + 3 x^{11} y^{4} + 7 x^{10} y^{4} + 6 x^{9} y^{4} + x^{9} y^{3} + 4 x^{8} y^{4} + 4 x^{8} y^{3} + 7 x^{7} y^{3} + 6 x^{6} y^{3} + x^{6} y^{2} + 2 x^{5} y^{3} + 3 x^{5} y^{2} + 5 x^{4} y^{2} + 3 x^{3} y^{2} + x^{2} y^{2} + x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 6 possibilities:
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 5 5 5 5 5 3 3 3 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 4 4 4 4 4 4 4 4 2 2 5 5 5 5 5 4 4 4 4 3 3 3 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 5 5 5 5 5 3 3 3 1 5 5 5 5 5 1 5 5 5 5 5 2 2 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 4 4 4 4 4 4 4 4 1 6 6 6 6 6 6 5 5 5 5 5 2 2 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 5 5 5 5 5 3 3 3 6 6 6 6 6 6 1 6 6 6 6 6 6 1 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1
1 1 1 1 3 3 3 4 4 4 4 1 2 2 3 3 3 7 7 7 7 7 7 7 6 6 6 6 6 6 1 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 6 6 6 6 6 6 1 2 2 3 3 3 5 5 5 5 5 3 3 3 1 1 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_4(\mathbb{R}^{9,1})$.

There are 2 possibilities.
Here are their Poincaré polynomials: $$x^{20} y^{4} + x^{19} y^{4} + x^{18} y^{4} + x^{18} y^{3} + x^{17} y^{4} + 2 x^{17} y^{3} + x^{16} y^{4} + 4 x^{16} y^{3} + 6 x^{15} y^{3} + 7 x^{14} y^{3} + x^{14} y^{2} + 7 x^{13} y^{3} + 2 x^{13} y^{2} + 6 x^{12} y^{3} + 5 x^{12} y^{2} + 4 x^{11} y^{3} + 7 x^{11} y^{2} + 2 x^{10} y^{3} + 10 x^{10} y^{2} + x^{9} y^{3} + 10 x^{9} y^{2} + 10 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 2 x^{7} y + 5 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{20} y^{4} + x^{19} y^{4} + x^{18} y^{4} + x^{18} y^{3} + x^{17} y^{4} + 2 x^{17} y^{3} + x^{16} y^{4} + 4 x^{16} y^{3} + 6 x^{15} y^{3} + 7 x^{14} y^{3} + x^{14} y^{2} + 7 x^{13} y^{3} + 2 x^{13} y^{2} + 6 x^{12} y^{3} + 5 x^{12} y^{2} + 4 x^{11} y^{3} + 7 x^{11} y^{2} + 2 x^{10} y^{3} + 10 x^{10} y^{2} + 11 x^{9} y^{2} + 11 x^{8} y^{2} + 7 x^{7} y^{2} + 2 x^{7} y + 5 x^{6} y^{2} + 3 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 2 possibilities:
1 1 1 1 1 2 2 1 4 4 4 4 6 6 6 6 6 6 7 7 7 7 7 7 7 1 7 7 7 7 7 7 7 2 2 6 6 6 6 6 6 5 5 5 5 5 4 4 4 4 7 7 7 7 7 7 7 2 2 10 10 10 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 7 7 7 7 7 7 7 2 2 5 5 5 5 5 3 3 3 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 1 1 1 2 2 1 4 4 4 4 6 6 6 6 6 6 7 7 7 7 7 7 7 1 7 7 7 7 7 7 7 2 2 6 6 6 6 6 6 5 5 5 5 5 4 4 4 4 7 7 7 7 7 7 7 2 2 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 7 7 7 7 7 7 7 2 2 5 5 5 5 5 3 3 3 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1





The AutoKron can't determine the cohomology of $\text{Gr}_4(\mathbb{R}^{10,1})$.

There are 16 possibilities.
Here are their Poincaré polynomials: $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + x^{16} y^{4} + 11 x^{16} y^{3} + x^{16} y^{2} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + x^{9} y^{3} + 12 x^{9} y^{2} + x^{9} y + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + x^{16} y^{4} + 12 x^{16} y^{3} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + x^{9} y^{3} + 12 x^{9} y^{2} + x^{9} y + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + 12 x^{16} y^{3} + x^{16} y^{2} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + x^{9} y^{3} + 12 x^{9} y^{2} + x^{9} y + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + 13 x^{16} y^{3} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + x^{9} y^{3} + 12 x^{9} y^{2} + x^{9} y + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + x^{16} y^{4} + 11 x^{16} y^{3} + x^{16} y^{2} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + x^{9} y^{3} + 13 x^{9} y^{2} + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + x^{16} y^{4} + 12 x^{16} y^{3} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + x^{9} y^{3} + 13 x^{9} y^{2} + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + 12 x^{16} y^{3} + x^{16} y^{2} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + x^{9} y^{3} + 13 x^{9} y^{2} + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + 13 x^{16} y^{3} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + x^{9} y^{3} + 13 x^{9} y^{2} + 11 x^{8} y^{2} + 2 x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + x^{16} y^{4} + 11 x^{16} y^{3} + x^{16} y^{2} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + 13 x^{9} y^{2} + x^{9} y + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + x^{16} y^{4} + 12 x^{16} y^{3} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + 13 x^{9} y^{2} + x^{9} y + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + 12 x^{16} y^{3} + x^{16} y^{2} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + 13 x^{9} y^{2} + x^{9} y + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + 13 x^{16} y^{3} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + 2 x^{10} y^{3} + 14 x^{10} y^{2} + 13 x^{9} y^{2} + x^{9} y + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + x^{16} y^{4} + 11 x^{16} y^{3} + x^{16} y^{2} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + 14 x^{9} y^{2} + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + x^{16} y^{4} + 12 x^{16} y^{3} + 12 x^{15} y^{3} + 2 x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + 14 x^{9} y^{2} + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + x^{17} y^{4} + 9 x^{17} y^{3} + 12 x^{16} y^{3} + x^{16} y^{2} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + 14 x^{9} y^{2} + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ $$x^{24} y^{4} + x^{23} y^{4} + 2 x^{22} y^{4} + 2 x^{21} y^{4} + x^{21} y^{3} + 3 x^{20} y^{4} + 2 x^{20} y^{3} + 2 x^{19} y^{4} + 4 x^{19} y^{3} + 2 x^{18} y^{4} + 7 x^{18} y^{3} + 10 x^{17} y^{3} + 13 x^{16} y^{3} + 13 x^{15} y^{3} + x^{15} y^{2} + 11 x^{14} y^{3} + 5 x^{14} y^{2} + 9 x^{13} y^{3} + 7 x^{13} y^{2} + 7 x^{12} y^{3} + 11 x^{12} y^{2} + 4 x^{11} y^{3} + 12 x^{11} y^{2} + x^{10} y^{3} + 15 x^{10} y^{2} + 14 x^{9} y^{2} + 12 x^{8} y^{2} + x^{8} y + 7 x^{7} y^{2} + 3 x^{7} y + 5 x^{6} y^{2} + 4 x^{6} y + 2 x^{5} y^{2} + 4 x^{5} y + x^{4} y^{2} + 4 x^{4} y + 3 x^{3} y + 2 x^{2} y + x y + 1$$ Here are the corresponding generator grids to these 16 possibilities:
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 1 11 11 11 11 11 11 11 11 11 11 11 1 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 1 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 1 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 1 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 12 12 12 12 12 12 12 12 12 12 12 12 1 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 1 11 11 11 11 11 11 11 11 11 11 11 1 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 13 13 13 13 13 13 13 13 13 13 13 13 13 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 13 13 13 13 13 13 13 13 13 13 13 13 13 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 13 13 13 13 13 13 13 13 13 13 13 13 13 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 13 13 13 13 13 13 13 13 13 13 13 13 13 11 11 11 11 11 11 11 11 11 11 11 2 2 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 1 11 11 11 11 11 11 11 11 11 11 11 1 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 1 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 1 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 1 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 1 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 1 11 11 11 11 11 11 11 11 11 11 11 1 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 2 2 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 1 9 9 9 9 9 9 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1
1 1 2 2 2 2 1 3 3 3 2 2 2 2 4 4 4 4 2 2 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 11 11 11 11 11 11 11 11 11 11 11 5 5 5 5 5 9 9 9 9 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 1 7 7 7 7 7 7 7 3 3 3 5 5 5 5 5 4 4 4 4 2 2 4 4 4 4 1 4 4 4 4 3 3 3 2 2 1 1