1. True. See p. 70.
2. False. Let \(T_1: \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(T_2: \mathbb{R}^m \rightarrow \mathbb{R}^k \) be linear transformations. Then, \(T_2 \circ T_1 \) is a linear transformation because:

\[
T_2(aT_1(x) + bT_1(x)) = aT_2(T_1(x)) + bT_2(T_1(x)) = aT_2(T_1(x)) + bT_2(T_1(x))
\]

showing that a composition of linear transformations is again a linear transformation.

3. False. Let \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) and \(\alpha = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^2 \). Then \(\alpha \mapsto A\alpha = \begin{bmatrix} x_3 \\ 0 \end{bmatrix} \) is zero exactly when \(x_3 = 0 \). Thus, the linear transformation \(x_2 \mapsto A\alpha \) is not injective.

4. False. Let \(A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \ C = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} \). Then \(AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = AC \), but \(B \neq C \).

5. The standard matrix representation is \(\begin{bmatrix} 1 & 4 & -5 \\ 3 & -7 & 4 \end{bmatrix} \).

6. Since \(T_1(x) = T(\alpha) \) and \(T_2(x) = T(\beta) \), we're looking for a system \(T(-\alpha, 3\beta) = -\alpha + 3\beta \).

7. \(T(\alpha) = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \) when the system with augmented matrix \(\begin{bmatrix} 1 & -2 & -1 \\ 3 & -2 & 4 \end{bmatrix} \) has a solution.

8. This matrix reduces to \(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) and so \(\alpha = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \) has the property that \(T(\alpha) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \).

9. \(T \) is injective if and only if \(T(\alpha) = \overline{\alpha} \) has only the trivial solution. The matrix \(\begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \end{bmatrix} \) reduces to \(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) so \(x_1 = x_2 = 0 \) is the only solution. \(T \) is surjective if and only if the matrix \(\begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & 0 \end{bmatrix} \) represents a consistent system for all real numbers \(a, b, c \). With \(a+b=0 \) and \(c=1 \), this reduces to \(\begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 1 \end{bmatrix} \) which is not the augmented matrix of a consistent system, so \(T \) is not surjective.

10. Here, \(T \) is not injective since \(\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) is a nonzero vector such that \(T(\alpha) = \overline{\alpha} \). \(T \) is surjective if and only if the matrix \(\begin{bmatrix} 1 & 4 & -5 & a \\ 3 & -7 & 4 & b \end{bmatrix} \) is the augmented matrix of a consistent system for all real numbers \(a, b \). This matrix reduces to \(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \).

11. \(T \) is one-to-one if and only if \(A \) has \(n \) pivot columns. For the explanation: The matrix \(A \) has \(n \) pivot columns if and only if every column of \(A \) is a pivot column. This in turn is equivalent to the equation \(Ax = \overline{\alpha} \) having no free variables, i.e., having a unique solution, which is exactly what is required for \(T \) to be one-to-one.

12. \(T \) is surjective if and only if \(A \) has \(m \) pivot columns. For the explanation: \(A \) has \(m \) pivot columns if and only if \(A \) has a pivot position in every row. This is in turn equivalent to the columns of \(A \) spanning \(\mathbb{R}^m \) which is equivalent to having \(T \) as a surjective map.
9. In (8), we saw that for \(T \) to be surjective (onto), the standard matrix representation must have \(m \) pivot columns. This can only happen when \(m = n \). Similarly, in (9), we saw that for \(T \) to be injective (one-to-one), the standard matrix representation must have \(n \) pivot columns. This can only happen when \(n = m \).

10. \(A - 2A = \begin{bmatrix} -4 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix} \)

11. \(B - 2A = \begin{bmatrix} 7 & -5 & 1 \\ 1 & 4 & -3 \end{bmatrix} - \begin{bmatrix} -8 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix} = \begin{bmatrix} 3 & -5 & 3 \\ -7 & 14 & -7 \end{bmatrix} \)

12. \(AC \) is undefined because the number of columns of \(A \) does not equal the number of rows of \(B \).

13. \(CD = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ -5 & -6 \end{bmatrix} \)

14. Suppose \(CA = I_n \) & \(x \) is a vector such that \(Ax = 0 \). Then, \(CAx = 0 \). But \(CAx = (CA)x = I_n x = x \). Thus, \(x = 0 \) & the equation \(Ax = 0 \) has only the trivial solution. In the language of linear transformations, \(A \) is the standard matrix representation of an injective linear transformation. If \(A \) is an \(m \times n \) matrix, then problem 14 tells us that \(n \leq m \), i.e., \(A \) cannot have more columns than rows.

15. Suppose \(AD = I_m \) and \(\vec{b} \in \mathbb{R}^m \). Let \(\vec{x} = DB \). Then \(A\vec{x} = A(DB) = (AD)\vec{b} = I_m \vec{b} = \vec{b} \). In the language of linear transformations, \(A \) is the standard matrix representation of a surjective linear transformation. If \(A \) is an \(m \times n \) matrix, then problem 15 tells us that \(m \geq n \), i.e., \(A \) cannot have more rows than columns.

16. The entry in the \(i \)-th row & \(j \)-th column of \(I_m A \) is found by taking the dot product of the \(i \)-th row of \(I_m \) with the \(j \)-th column of \(A \). The \(i \)-th row of \(I_m \) has a 1 in the \(i \)-th entry & 0's elsewhere. Thus, the dot product with the \(j \)-th column of \(A \) is just \(a_{ij} \).

17. Alternate (originally intended) proof: Write \(A \) as \([\vec{a}_1 \vec{a}_2 \ldots \vec{a}_m] \). Then by definition \(I_m A = [I_m \vec{a}_1 \ I_m \vec{a}_2 \ldots \ I_m \vec{a}_m] \). Since \(I_m \vec{a}_i = \vec{a}_i \) for \(i = 1, \ldots, m \), then \(I_m A = [\vec{a}_1 \ \vec{a}_2 \ldots \ \vec{a}_m] = A \).