1. True or False. Justify each answer with an explanation or counterexample (as appropriate).

(a) A subspace is also a vector space.
(b) A vector is any element of a vector space.
(c) \(\mathbb{R}^2 \) is a subspace of \(\mathbb{R}^3 \).
(d) The null space of an \(m \times n \) matrix \(A \) is the solution set of the equation \(A\vec{x} = \vec{0} \).
(e) The kernel of a linear transformation is a vector space.
(f) \(\text{Col}(A) \) is the set of all solutions of \(A\vec{x} = \vec{b} \).

2. Let \(H \) be the set of all vectors of the form
\[
\begin{pmatrix}
-2t \\
5t \\
3t \\
\end{pmatrix}
\]
Find a vector \(\vec{v} \in \mathbb{R}^3 \) such that \(H = \text{Span}\{\vec{v}\} \). Why does this show that \(H \) is a subspace of \(\mathbb{R}^3 \)?

3. Is the set of all polynomials of the form \(p(t) = at^2 \) where \(a \in \mathbb{R} \) a subspace of \(\mathbb{P}_n \) for some value of \(n \)? Explain your answer.

4. Is the set of all polynomials of the form \(p(t) = a + t^2 \) where \(a \in \mathbb{R} \) a subspace of \(\mathbb{P}_n \) for some value of \(n \)? Explain your answer.

5. For fixed positive integers \(m \) and \(n \), the set \(M_{m\times n} \) of all \(m \times n \) matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars. Determine if the set \(H \) of all matrices of the form
\[
\begin{pmatrix}
a & b \\
0 & d \\
\end{pmatrix}
\]
is a subspace of \(M_{2\times 2} \).

6. Define \(T : M_{2\times 2} \to M_{2\times 2} \) by \(T(A) = A + A^T \). Note: An arbitrary element of \(M_{2\times 2} \) is of the form
\[
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix}
\]

(a) Show that \(T \) is a linear transformation.
(b) Let \(B \) be any element of \(M_{2\times 2} \) such that \(B^T = B \). Find \(A \) in \(M_{2\times 2} \) such that \(T(A) = B \).
(c) Show that the range of \(T \) is the set of \(B \) in \(M_{2\times 2} \) with the property that \(B^T = B \).
(d) Describe the kernel of \(T \).

7. Let \(\vec{u} \) be an element in a vector space \(V \). Suppose \(c\vec{u} = \vec{0} \) for some nonzero scalar \(c \). Show that \(\vec{u} = \vec{0} \). Mention the axioms or properties you use.

8. Determine if \(\vec{w} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \) is in \(\text{Nul}(A) \) where
\[
A = \begin{pmatrix}
2 & 6 & 4 \\
-3 & 2 & 5 \\
-5 & -4 & 1 \\
\end{pmatrix}
\]

9. Find an explicit description of \(\text{Nul}(A) \) where \(A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & -1 \end{pmatrix} \) by listing vectors that span the null space.
10. Use either an appropriate theorem to show that the given set is a vector space, or find a specific example to the contrary.

(a) \(H = \left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : r, s, t \in \mathbb{R}, 3r - 2 = 3s + t \right\} \)

(b) \(K = \left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \in \mathbb{R} \right\} \)

11. Let \(A = \begin{bmatrix} 5 & -2 & 3 \\ -1 & 0 & -1 \\ 0 & -2 & -2 \\ -5 & 7 & 2 \end{bmatrix} \). What are the values of \(k \) and \(t \) such that \(\text{Nul}(A) \) is a subspace of \(\mathbb{R}^k \) and \(\text{Col}(A) \) is a subspace of \(\mathbb{R}^t \).

12. Define \(T : \mathbb{P}_2 \rightarrow \mathbb{R}^2 \) by \(T(p) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix} \). For instance, if \(p(t) = 3 + 6t + 8t^2 \), then \(T(p) = \begin{bmatrix} 3 \\ 17 \end{bmatrix} \).

(a) Show that \(T \) is a linear transformation. [Hint: For arbitrary polynomials \(p, q \in \mathbb{P}_2 \), compute \(T(p + q) \) and \(T(cp) \).]

(b) Find a polynomial \(p \in \mathbb{P}_2 \) that spans the kernel of \(T \) and describe the range of \(T \).

13. Let \(T : V \rightarrow W \) be a linear transformation from a vector space \(V \) into a vector space \(W \). Prove that the range of \(T \) is a subspace of \(W \). [Hint: Typical elements of the range have the form \(T(v) \) and \(T(w) \) for some \(v, w \in V \).]