Yanqing Ji

CPEN435 - Parallel and Cloud Computing

Course Description: 

This course is designed to provide junior or senior students in electrical/computer engineering, computer science, and other engineering with fundamentals in parallel and cloud computing. Students will gain hands-on programming experience solving compute and storage-intensive problems in a variety of disciplines on Amazon’s cloud computing platform.

Prerequisites: CPEN 231 and CPSC 122.

Course Instructor Information:

Name:                   Yanqing Ji, Professor of Electrical & Computer Engineering

Office:                   Herak Center for Engineering Room 247

Office Phone:        (509) 313 - 3529

Email:                    ji@gonzaga.edu

Office Hours:         11:00am–12:00pm (M, W & F); or stop by.

Textbooks:  

1.    Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, Introduction to Parallel Computing, 2nd Edition, Addison Wesley, 2003. (ISBN: 0-201064865-2)

2.    Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, Matering Cloud Computing: Foundations and Applications Programming, 1st Edition,  Morgan Kaufmann, 2013 (ISBN-13: 978-0124114548)

Specific Topics:

·        Parallel programming platforms

·        Principles of parallel algorithm design

·        Analytical modeling of parallel programs

·        Programming using the message-passing paradigm (MPI)

·        Programming shared address space platforms (POSIX Thread)

·        Introduction to cloud computing

·        Amazon web services

·        Big data

·        Hadoop platform

·        MapReduce programming paradigm

·        Other advanced topics.

Quick Resources:

1.    Ian Foster, Designing and Building Parallel Programs, Available at http://www.mcs.anl.gov/~itf/dbpp/

2.    The Message Passing Interface (MPI): http://www-unix.mcs.anl.gov/mpi/tutorial/

3.    POSIX thread (pthread) tutorials:

a.    http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

b.    https://computing.llnl.gov/tutorials/pthreads/

4.    Amazon web services: http://aws.amazon.com/

5.    Hadoop: https://hadoop.apache.org/

6.    MapReduce: http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

7.    More tutorial links

https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/mpi/

https://computing.llnl.gov/tutorials/mpi_performance/

Grade Point Distribution:

Homework & labs:                      20%

Project:                                     15%

Exams (highest 2 out of 3):         40%

Final:                                        25%

Grading Scale:

94-100                       A

90-93                         A-

86-89                         B+

82-85                         B

78-81                         B-

74-77                         C+

70-73                         C

66-69                         C-

62-65                         D+

58-61                         D      

0-57                           F       

Makeup Exam and Homework Policy: No makeup exams. Late submission of homework is not accepted except unavoidable conditions (e.g., sickness).

Class Attendance Policy: Students are referred to read the Gonzaga University Undergraduate Catalogue regarding the class attendance policy (page 38) – “… the maximum allowable absence is two class hours (100 minutes) for each class credit, … the grade given for excessive absences is a “V”, which has the same effect as “F” (Fail) and is counted in the GPA”.